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•depositing pheromones on
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∀e,We(n+1) = We(n) + 1e∈γ

Question: Do the ants find
shortest paths from N to F ?
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A warm-up and a Pólya urn
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Pólya’s urn: Asymptotic behavior:
Almost surely,

#

n
−→
n→∞

U ∼ U([0, 1])
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Geodesic (G) model on the lozenge graph

The lozenge graph:

1

2

4

5

3

N

F

Theorem (Kious, Mailler, Schapira [KMS22a])
Almost surely,

Wi(n)

n
−→
n→∞

χi, ∀1 ≤ i ≤ 5

where (χi)1≤i≤5 is a random vector, such that almost surely,
χ1 = χ2 = 1− χ4 = 1− χ5 ∈ (0, 1) and χ3 = 0.
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Loop-erased (LE) model on series-parallel graphs

Recursive definition of series-parallel (SP) graphs (image from [KMS22a]):

Theorem (Kious, Mailler, Schapira [KMS22a])
If G is a SP graph, then in the loop-erased (LE) model, almost surely,

We(n)

n
−→
n→∞

χe, ∀e ∈ E

where (χe)e∈E is a random vector such that ∀e, χe ̸= 0 if and only if e belongs to a
shortest path from N to F .
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Conjecture for the loop-erased (LE) and geodesic (G) models

Conjecture [KMS22a]
Almost surely,

We(n)

n
−→
n→∞

χe, ∀e ∈ E

where (χe)e∈E is a random vector such that

(LE) model χe ̸= 0 a.s. if and only if e belongs to a shortest path from N to F

(G) model χe ̸= 0 a.s. only if e belongs to a shortest path from N to F

For L large enough, there exists e such that

P (We(n)/n → 0) > 0
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Trace (T) model ([KMS22b])

G is tree-like if G\{F} is a tree.
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F

Theorem [KMS22b]
If G = (V,E) is tree-like and a = {N ,F} ∈ E with multiplicity 1, then

Wa(n)

n
→ 1 and

We(n)

n
→ 0, ∀e ∈ E\{a}

Other examples: the cone, the lozenge and the (p, q)-path
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Conjecture: deterministic limit for any graph without multiple-edges adjacent to F .
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Multinest version

Multinest-version: at every step n, N (n) =

{
N1 with proba α1 ∈ (0, 1)

N2 with proba α2 = 1− α1

.

N2

F

N1

Triangle-SP graph: G1, G2, G3 series-parallel graphs
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Multinest version on triangle-SP graphs

Multinest-version: at every step n, N (n) =

{
N1 with proba α1 ∈ (0, 1)

N2 with proba α2 = 1− α1

.

N2

G1 G2
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F
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F
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Triangle-SP graph: G1, G2, G3 series-parallel graphs
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Our main result: the loop-erased (LE) model on triangle-SP graphs

For i ∈ {1, 2, 3},

• ℓi := hmin(Gi) distance between the source and the sink of Gi.

• Ni(n) number of reinforcement in Gi before step n.

Remark: ∀n,N1(n) +N2(n) = n.

Theorem (Mailler, V. 2025+)
We assume that ℓ1 ≤ ℓ2. Almost surely,

• if ℓ2 ≥ ℓ1 + ℓ3, then N1(n)
n −→

n→∞
1 and N3(n)

n −→
n→∞

α2,

• if ℓ3 ≥ ℓ1 + ℓ2, then N1(n)
n −→

n→∞
α1 and N3(n)

n −→
n→∞

0,

• otherwise N1(n)
n −→

n→∞
β1 and N3(n)

n −→
n→∞

β3 (with β1, β3 ∈ (0, 1)).

Moreover, almost surely: for all e ∈ Gi,
We(n)

n −→
n→∞

ξe, with ξe ̸= 0 if and only if

limNi(n)/n > 0 and e belongs to a shortest path between two vertices of {N1,N2,F}.
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β1 =
α1ℓ1(ℓ3+ℓ2−ℓ1)

ℓ1ℓ3+(ℓ2−ℓ1)((1−α1)(ℓ3−ℓ2)+α1ℓ1)

β3 =
α1ℓ3(1−α1)(ℓ1+ℓ2−ℓ3)

(ℓ2−ℓ1)(ℓ1+ℓ2−ℓ3)α1+ℓ2(ℓ1−ℓ2+ℓ3)



Our main result: the loop-erased (LE) model on triangle-SP graphs

For i ∈ {1, 2, 3},

• ℓi := hmin(Gi) distance between the source and the sink of Gi.

• Ni(n) number of reinforcement in Gi before step n.

Remark: ∀n,N1(n) +N2(n) = n.

Theorem (Mailler, V. 2025+)
We assume that ℓ1 ≤ ℓ2. Almost surely,

• if ℓ2 ≥ ℓ1 + ℓ3, then N1(n)
n −→

n→∞
1 and N3(n)

n −→
n→∞

α2,

• if ℓ3 ≥ ℓ1 + ℓ2, then N1(n)
n −→

n→∞
α1 and N3(n)

n −→
n→∞

0,

• otherwise N1(n)
n −→

n→∞
β1 and N3(n)

n −→
n→∞

β3 (with β1, β3 ∈ (0, 1)).

Moreover, almost surely: for all e ∈ Gi,
We(n)

n −→
n→∞

ξe, with ξe ̸= 0 if and only if

limNi(n)/n > 0 and e belongs to a shortest path between two vertices of {N1,N2,F}.

9 / 20

N2

G1 G2

G3N1

F

N2

F

N1



Toolbox & Proof



Conductance method

Effective conductance between two vertices - recursive definition:

S

T

w

(a) CG = w

S

T

G1 G2

(b) CG = CG1
+ CG2

T

S

G1

G2

I

(c) CG = 1
1/CG1

+1/CG2

Key idea: the probability that a random walk starting from S hits T1 before T2 is
CG1

CG1
+CG2

.

ST1 T2G1 G2
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Conductances in the (LE) model on SP graphs

On SP graphs:

N

F

G

Theorem (Kious, Mailler, Schapira [KMS22a])

There exists a random variable K and constants α,C such that

n

hmax(G)
≤ CG(n) ≤

n+ C

hmin(G)
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Preliminary computation

N2

G1 G2

G3N1

F

Example: If N (n) = N1, the probability to reinforce in G1 is

CG1
(n)

CG1
(n) +

CG2
(n)CG3

(n)

CG2
(n)+CG3

(n)

Key to apply [KMS22a] results:

• conditionnal on γ ∈ G1, γ is distributed as γ1 obtained by doing a (LE) step in G1 only
• conditionnal on γ ∈ G3 ∪G2, γ is distributed as γ3γ2 obtained by doing independent

(LE) steps in G3 and G2 only.

Corollary
For every i ∈ {1, 2, 3},

CGi
(n)

Ni(n)
−→
n→∞

1

hmin(Gi)
=

1

ℓi

(with bounds for the convergence speed)
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Stochastic approximation

A process (Xn)n≥0 is a stochastic approximation if

Xn+1 = Xn +
F (Xn) + ξn+1 + rn

n+ 1
, ∀n

and if
• (Xn)n≥0 is adapted to some filtration (Fn)n≥0, and takes value in some convex compact
E ⊆ Rd,

• F : E → Rd is a Lipschitz function,
• the noise ξn+1 is Fn+1-measurable and such that ∀n,En [ξn+1] = 0,
• the remainder term rn is Fn-measurable and such that

∑
n n−1||rn|| < ∞ a.s.

Claim: the process
(

N1(n)
n

, N3(n)
n

)
n≥0

is a stochastic approximation !
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Illustration of the ODE method

A process (Xn)n≥0 is a stochastic approximation if

Xn+1 −Xn =
F (Xn) + ξn+1 + rn

n+ 1
, ∀n

ODE method
If there exists p1, . . . , pk s.t. for any w ∈ [0, 1]2,
the solution of the ODE ẏ = F (y) starting at w
converges to some pi, then almost surely,

∃i :
(
N1(n)

n
,
N3(n)

n

)
−→
n→∞

pi

Main idea: if ξn+1 and rn behave nicely,
(

N1(n)
n

, N3(n)
n

)
follows the flow of the ODE ẏ = F (y) !

14 / 20



Prove that our process is a stochastic approximation

We let, ∀n, N(n) = (N1(n), N3(n)), N̂(n) =
(

N1(n)
n

, N3(n)
n

)
and I =

(
1Ni(n+1)=Ni(n)+1

)
i=1,3

N(n+ 1)

n+ 1
=

N(n) + I

n+ 1
=

N(n)

n
+

1

n+ 1

(
I − E[I|N̂(n)] + E[I|N̂(n)]− N(n)

n

)

=
N(n)

n
+

1

n+ 1

(
I − E[I|N̂(n)] + E[I|N̂(n)]− p(N̂(n)) + p(N̂(n))− N(n)

n

)

=
N(n)

n
+

F (N̂(n)) + ξn+1 + rn
n+ 1

And
∑

n
||rn||

n
< ∞, because ∀i ∈ {1, 2, 3}, Ni(n) ≥ nεi .

E[I|N̂(n)]1 = α1
CG1(n)

CG1(n) +
CG2

(n)CG3
(n)

CG2
(n)+CG3

(n)

+ α2

1− CG2(n)

CG2(n) +
CG1

(n)CG3
(n)

CG1
(n)+CG3

(n)


∼ α1

w1/ℓ1
w1/ℓ1 +

w2/ℓ2
w3/ℓ3

w2/ℓ2+w3/ℓ3

+ α2

(
1−

w2/ℓ2
w2/ℓ2 +

w1/ℓ1
w3/ℓ3

w1/ℓ1+w3/ℓ3

)
=: p1(w1, w2, w3) (with wi = N̂i(n))
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Convergence of the process thanks to the ODE method

Vector field: F (w1, w3)

(example with ℓ1 = 2, ℓ2 = 4 and ℓ3 = 3)

What does not happen:

Conclusion: any solution to ẏ = F (y) starting
in [0, 1]2 converges
→

(
N1(n)

n , N3(n)
n

)
converges !

16 / 20



Eliminating the “bad” zeros

Vector field: F (w1, w3)

(example with ℓ1 = 2, ℓ2 = 4 and ℓ3 = 3)

Lemma

• lim infn→∞
N1(n)

n ≥ α1

• if ℓ3 < ℓ1 + ℓ2, ∃c > 0:

lim inf
n→∞

N3(n)

n
≥ c

• if ℓ2 < ℓ1 + ℓ3, ∃c′ < 1:

lim sup
n→∞

N1(n)

n
≤ c′
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Urn models

N(n) := # at step n. In a classical Pólya urn:

P
(
N(n+ 1) = N(n) + 1

∣∣∣∣N(n)

n
= w

)
=

G(

w

)

w is a stable fixed point if G(w) = w

and G′(w) ≤ 1

Convergence of G-urn processes

Almost surely, N(n)
n

−→
n→∞

W , where

W is a (random) stable fixed point of
G.

Examples:
• if G(w) = w, W ∼ U([0, 1])

• if G(w) = 2w3 − 3w2 + 2w,
W = 0.5 a.s.
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Convergence of G-urn processes

Almost surely, N(n)
n

−→
n→∞

W , where

W is a (random) stable fixed point of
G.

Examples:
• if G(w) = w, W ∼ U([0, 1])

• if G(w) = 2w3 − 3w2 + 2w,
W = 0.5 a.s.
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and G′(w) ≤ 1

Convergence of G-urn processes

Almost surely, N(n)
n

−→
n→∞

W , where

W is a (random) stable fixed point of
G.

Examples:
• if G(w) = w, W ∼ U([0, 1])

• if G(w) = 2w3 − 3w2 + 2w,
W = 0.5 a.s.

Use this on our two-dimensional process (N1(n), N3(n))

If, for any x3 ∈ [0, 1],

P
(
N1(n+ 1) = N1(n) + 1

∣∣∣∣N1(n)

n
= w1,

N3(n)

n
= w3

)
︸ ︷︷ ︸

∼F (w1,w3)

≥ G(w1)

and if every stable fixed point of G is larger than some c,
then

lim inf
n→∞

N1(n)

n
≥ c
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Conclusion in the different cases

Figure 3: ℓ1 = 2, ℓ2 = 4 and ℓ3 = 3.
(

N1(n)
n

, N3(n)
n

)
→ (β1, β3)

Lemma

• lim infn→∞
N1(n)

n ≥ α1

• if ℓ3 < ℓ1 + ℓ2, ∃c > 0:

lim inf
n→∞

N3(n)

n
≥ c

• if ℓ2 < ℓ1 + ℓ3, ∃c′ < 1:

lim sup
n→∞

N1(n)

n
≤ c′
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Conclusion in the different cases

Figure 3: ℓ1 = 2, ℓ2 = 6 and ℓ3 = 3.
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, N3(n)
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)
→ (1, α2)

Lemma

• lim infn→∞
N1(n)

n ≥ α1

• if ℓ3 < ℓ1 + ℓ2, ∃c > 0:

lim inf
n→∞

N3(n)

n
≥ c

• if ℓ2 < ℓ1 + ℓ3, ∃c′ < 1:

lim sup
n→∞

N1(n)

n
≤ c′
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Conclusion in the different cases

Figure 3: ℓ1 = 2, ℓ2 = 4 and ℓ3 = 9.
(

N1(n)
n

, N3(n)
n

)
→ (α1, 0)

Lemma

• lim infn→∞
N1(n)

n ≥ α1

• if ℓ3 < ℓ1 + ℓ2, ∃c > 0:

lim inf
n→∞

N3(n)

n
≥ c

• if ℓ2 < ℓ1 + ℓ3, ∃c′ < 1:

lim sup
n→∞

N1(n)

n
≤ c′
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Thank you !



References

Daniel Kious, Cécile Mailler, and Bruno Schapira.
Finding geodesics on graphs using reinforcement learning.
Ann. Appl. Probab., 32(5):3889–3929, 2022.

Daniel Kious, Cécile Mailler, and Bruno Schapira.
The trace-reinforced ants process does not find shortest paths.
J. Éc. polytech. Math., 9:505–536, 2022.

Russell Lyons and Yuval Peres.
Probability on Trees and Networks.
Cambridge University Press, New York, 2016.
Available at https://rdlyons.pages.iu.edu/.

Robin Pemantle.
A survey of random processes with reinforcement.
Probability surveys, 4:1–79, 2007.

20 / 20

https://rdlyons.pages.iu.edu/

	Introduction
	Toolbox & Proof
	Thank you !

