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Definition of the model (one-nest version)

| At each step n: |
@ N *weighted random walk:
Wuw(n)
Plu—v)= =——""—
L ( ) Ze:uEe W((ﬂ)

1 1 stopped at F

—
—_
—

on the way back:

Ve, We(n+1) = We(n) + Lee

f
e Question: Do the ants find

shortest paths from A to F ?
(T) trace (LE) loop-erased (G) geodesic
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A warm-up and a Pélya urn

Polya’s urn:

Asymptotic behavior:
Almost surely,

ﬁ — U ~U([0,1])

n n—oo
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Geodesic (G) model on the lozenge graph

The lozenge graph:

Theorem (Kious, Mailler, Schapira [KMS22a])
Almost surely,

}ﬂZégzzz — Xi, Vi<i<5h

n n—00
where (x;),<;<5 is a random vector, such that almost surely,
x1i=x2=1—xa1=1-x5¢€(0,1)and x3 = 0.
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Loop-erased (LE) model on series-parallel graphs

Recursive definition of series-parallel (SP) graphs (image from [KMS22a]):

52
N
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Loop-erased (LE) model on series-parallel graphs

Recursive definition of series-parallel (SP) graphs (image from [KMS22a]):

10§ P

Theorem (Kious, Mailler, Schapira [KMS22a])
If G is a SP graph, then in the loop-erased (LE) model, almost surely,

M — Xe, VeeFE

n n—oo

where (x.)..p is @ random vector such that Ve, x. # 0 if and only if e belongs to a
shortest path from N to F.
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Conjecture for the loop-erased (LE) and geodesic (G) models

Conjecture [KMS22a]
Almost surely,
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where (x.)..x i @ random vector such that
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Conjecture for the loop-erased (LE) and geodesic (G) models

Conjecture [KMS22a]
Almost surely,

M — Xe, Ve€eFE

n n—oo

where (x.)..x i @ random vector such that

(LE) model x. # 0 a.s. if and only if e belongs to a shortest path from N to F
(G) model x. # 0 a.s. only if e belongs to a shortest path from N to F

For L large enough, there exists e such that
L edges

P(We(n)/n —0) >0
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Trace (T) model ([KMS22b])

G is tree-like if G\{F} is a tree.
Theorem [KMS22b]
If G = (V, E) is tree-like and a = {N, F} € E with multiplicity 1, then

Wa(n)

—1 and

W"'T(”) 0, Vee E\{a}
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Trace (T) model ([KMS22b])

G is tree-like if G\{F} is a tree.

Theorem [KMS22b]
If G = (V, E) is tree-like and a = {N, F} € E with multiplicity 1, then

W We
We(n) —1 and Welr) — 0, Vee E\{a}
n n
Other examples: the cone, the lozenge and the (p, ¢)-path a by
as by
b-
®—2 o b
1
4
& & F) b,
W (n) W (n) * * Way, (n) kW (n) k
w0 njgo (17 1/37 1/37 0) w ’n,jo)o (U} ? 1/27 1/27 W 1/2) w0 njgo &% w njgo

Conjecture: deterministic limit for any graph without multiple-edges adjacent to F'.
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Multinest version

N1 with proba o4 € (0,1)

Multinest-version: at every step n, N'(n) = ) .
Nz with proba as =1 —
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Multinest version on triangle-SP graphs

N1 with proba o4 € (0,1)

Multinest-version: at every step n, N'(n) = ) .
Nz with proba as =1 —

Triangle-SP graph: G1, G5, G5 series-parallel graphs
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Our main result: the loop-erased (LE) model on triangle-SP graphs

Fori € {1,2,3},
* {; := hmin(G;) distance between the source and the sink of G;.
* N;(n) number of reinforcement in G, before step n.

Remark: ¥n, Ni(n) + Na(n) = n.
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Our main result: the loop-erased (LE) model on triangle-SP graphs

Fori € {1,2,3},

* {; := hmin(G;) distance between the source and

B = a1y (l3+0r—01)
L™ 005+ (6—01)(T—a1) (C3—C2) +a1 £1)

* N;(n) number of reinforcement in G; before stg
Remark: ¥n, Ni(n) + Na(n) = n.

Theorem (Mailler, V. 2025+)
We assume that (1 < {>. Almost surely,

By = arl3(1—ar)(li+lo—L3)
(La—L1) (01 +Lo—L3)aq+lo (L1 —La+L3)

© ifly > £y + L, then 218, 1 gng Ns(m) — az, O
n— o0 n oo
e fls > 01 + 0o, then Nl(") — o and N3 Ns(m) O
n— o0
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Our main result: the loop-erased (LE) model on triangle-SP graphs

Fori € {1,2,3},
* {; := hmin(G;) distance between the source and the sink of G;.
* N;(n) number of reinforcement in G, before step n.

Remark: ¥n, Ni(n) + Na(n) = n.

Theorem (Mailler, V. 2025+)
We assume that (1 < {5. Almost surely,

Nln) 1 gnd M), g,

n— oo n—oo

° if€3261+£2, theanT(") j) o andN3T — O,

n— oo

o Iffg >0+ 43, then

- otherwise T — 5y and St — By (with By, B3 € (0,1)).
n—oo n o0

Moreover, almost surely: for all e € G, WT(”) — &, with & # 0 if and only if
n—oo
lim N;(n)/n > 0 and e belongs to a shortest path between two vertices of { N1, No, F}.

9/20



Toolbox & Proof




B conductance method
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B conductance method

Effective conductance between two vertices - recursive definition:

DA

@Cg=w (b) Cqg = Cg, + Cag, () Cg = T/Ca, +1/0a; +1/Cc2
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B conductance method

Effective conductance between two vertices - recursive definition:

@ o

[
@Cq=w (b) Cqg = Cg, +Cqg, (c) Cg = m %

¢ Key idea: the probability that a random walk starting from S hits T; before T is

Ca +C(;2

10/20



Conductances in the (LE) model on SP graphs

On SP graphs:
Theorem (Kious, Mailler, Schapira [KMS22a])

n n+C
< <
Frmax(G) — Caln) = Pnin (G)

11/20



Conductances in the (LE) model on SP graphs

On SP graphs:
Theorem (Kious, Mailler, Schapira [KMS22a])

There exists a random variable K and constants «, C' such that
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Conductances in the (LE) model on SP graphs

On SP graphs:
Theorem (Kious, Mailler, Schapira [KMS22a])

There exists a random variable K and constants «, C' such that

n— Kn® n+C
hmin(G)

< CG(”) < m




Preliminary computation

Example: If M'(n) = N, the probability to reinforce in G is

Cn31(n)
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Co, (n) + gt o
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Preliminary computation

Example: If M'(n) = N, the probability to reinforce in G is

O S— {ntes
Ca,(n)Ca, (n)
v Co1(n) + g im+0e, 0
&)

¢ Key to apply [KMS22a] results:

+ conditionnal on v € G4, ~ is distributed as v, obtained by doing a (LE) step in G only
« conditionnal on v € G3 U G5, ~y is distributed as 37- obtained by doing independent
(LE) steps in G3 and G4 only.
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Preliminary computation

Example: If M'(n) = N, the probability to reinforce in G is

OG1 (n)
Ca,(n)Cq,(n)
Cen(n) + ooy

¢ Key to apply [KMS22a] results:

+ conditionnal on v € Gy, ~ is distributed as ~, obtained by doing a (LE) step in G; only
« conditionnal on v € G3 U G5, ~y is distributed as 37- obtained by doing independent
(LE) steps in G5 and G5 only.
Corollary
For every i € {1, 2,3},
Cg,(n) 1 1

N;(n) - hmin(Gi) &

(with bounds for the convergence speed)
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Preliminary computation

Example: If N'(n) = N1, the prabahilitv ta rainforce in G is

 conditionnal on v € Gy, ~y is distributed as 71 owr =p in G; only
 conditionnal on v € G3 U G5, v is distributed as ~37- obtained by doing indOdent
(LE) steps in G3 and G4 only.
Corollary O
For every i € {1, 2,3}, O

Ni(n) n—oo hmin(Gi) 4

(with bounds for the convergence speed)
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B Stochastic approximation

A process (X,)n>0 is a stochastic approximation if

F(Xn) < {u+1 + 7

Xnt1 = Xp A
+ * n+1 ) VAD
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B Stochastic approximation

A process (X, ).>0 is a stochastic approximation if

F(Xn) < £u+1 + 7

Xnt+1 = Xn )
+1 + p—— Vn
and if
* (Xn)n>o0 is adapted to some filtration (F,)»>0, and takes value in some convex compact
£ CRY,

« F: & — R%is a Lipschitz function,
* the noise &,,+1 is Fn4+1-measurable and such that Vn, E,, [£,,+1] = 0,
+ the remainder term r,, is F,,-measurable and such that >> n~"||r,|| < oo a.s.

Claim: the process (NIT("), N*T(“)) is a stochastic approximation !
0

n>

13/20



lllustration of the ODE method

A process (X, )n>0 is a stochastic approximation if

F(Xn)“’fn\l‘l’rn
n+1

Xnt1 — Xn = , Vn

ODE method

If there exists p1, . .., px S.t. for any w € [0, 1]?,

the solution of the ODE y = F(y) starting at w

converges to some p;, then almost surely,
Ni(n) Ns(n)

di: | ——,——=) — p:
n n n— oo

¢ Main idea: if £, and r,, behave nicely, <Nl (n) Nﬁf")) follows the flow of the ODE § = F(y)!



Prove that our process is a stochastic approximation

We let, vn, N(n) - (Nl (n)’N3(n))’ N(n) = (NlT(mv NJT(H)) and I = (ILNi(n-H):N/;(n)-H)Z‘:l,S

Nr(ln++11) _ NT(LnJ)j I _ NS%) = Jlr 0 (1 —E[I|N(n)] + E[I|N(n)] — @)
= N(n) + F(N(n)) + én+l + Tn
n n+1

15/20



Prove that our process is a stochastic approximation

We let, Vn, N(n) = (N1 (n), Na(n)), N(n) = (X2, 250 ) and I = (L, (nt =i (m 1) 1y 5

N(n+1) N(n)+1I N(n) 1 o - N(n)
= = I —E[I|N(n -2
i) 1 e [N (n)] + E[I|N(n)] = —
_Nm F(N(n)) + &gt +Tn
T oon n—+1
A _ Cqa (n) Ca: (n)
EIIN(n)1 = o C{GQ(n)CGB(n) +ozf1-— czal<n>cc;3<n>
Ce, (n) + o5yt Ca, o) Ces(n) + o5y rca; ™
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Prove that our process is a stochastic approximation

We let, Vn, N(n) = (N1 (n), Na(n)), N(n) = (22, 250 ) and T = (1wt =i (m 1),y 5

For every i € {1,2,3},

(7(;i(7l) N 1
Nz(n) § hmin(Gi)

N(n+1) N(n)+I1 N(n) 1 I
n+1 n+1 — n n+1

n n+1

. @) Ca.
E[I|N(n)1 = an Gclcgn()n)cc, -tz 1- Gczc(;n()n)cc; o) %
CGl(n)+ 2 2 CGz(n)‘Jr v 2

Ta, (T Ca, (W) T, (M 1T, ()
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We let, Vn, N(n) = (N1 (n), Na(n)), N(n) = (22, 250 ) and T = (1wt =i (m 1),y 5

For every i € {1,2,3},

(7(;i(7l) . 1
Nz(n) § hmin(Gi)

N(n+1) N(n)+I1 N(n) 1 I
n+1 n+1 — n n+1

n n+1

. @ Ca.
E[IIN(n)1 = en Gclcgn()n)cc, m toz|l- GCZCEn()n)CG (n) %
CGl(n)+ . = CGz(n)‘Jr v 2

Ta, (T Ca, (W) T, (M 1T, ()

~oqp—m——— 4|l - —m—E | = pl(wl W2 wg) (with w; = Nz(n))
wy W3 /0, Ws [0, ws Wy /9, Ws [p, ) )
[0+ we e, [ e,
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Prove that our process is a stochastic approximation

We let, ¥n, N(n) = (Ni(n), N3(n)), N(n) = (N71£n>77N37§n)) and I = (L, (nt+1)=N; (m)+1) ;_1 5

= = I —E[I|IN(n)]+E _ X&)
n+1 nt1 P [IIN ()] + B[N (n)] - —
N(n 1 A ~ ~ ~ N(n
_N@m) (z — E[I|N (n)] + BN ()] — p(N () + p((n)) — ))
n n+1 "
_ N(n) + F(N(n))+é7z+l =+ rn
oon n+1
S c Ce,
B[N = e GClcE:l()")ch(n) e (1 - Gé§?<)n>cG3<n> )
CG1 (TL) + m CGz (TL) + m
~ al% + a2 <1 — %) = pl(w17w27w3) (Wlth w; = Nz(n))
Ut e "5l A e
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Prove that our process is a stochastic approximation

We let, Vn, N(n) = (N1 (n), Na(n)), N(n) = (X2, 250 ) and I = (L, (nt =i (m 1) 1y 5

Nn+1) _ Nm+1 _ (n) 1 o - N(n)
= —E[I|N(n = ——5
mt St W (1 BN )]+ BN @) -
_N n) 1 o - - N(n)
I —E[I|N(n E[I|N —
0 4 5 (- BUIN 0] + B 0] - 29 0) + (0¥ () = 2
_ Nn)JrF(N(n))"‘énJrl'f'rn
T on n+1
And >~ M < oo, because Vi € {1, 2,3}, N;(n) > n®.
E[I|N(n)1 = oa CGC1 (n()n)c -tz 1- CGCZ( ()n)C @)
Ca,(n) + B il AL Ca,(n) + ey
1 Tap (M1 Cas () 2 T, (M 1T, ()
~ al% + a2 <1 — %) =9 pl(’whwz,wg) (Wlth w; = Nz(n))
e e W2/t + g,
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& Urn models
N (n) := #% at step n. In a classical Pélya urn:
IP’(N(n—i—l):N(n)—i—l‘N(n):w>: w

n
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B Urn models
(w)

N(n) := ## at step n. In a G-urn:
P <N(n+ 1) = N(n) + 1‘N?(1”) - w> —G

0.5 +

G(w)

w
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N(n) := ## at step n. In a G-urn:
N(n) = w> = G(w) @

IP’(N(n—Fl):N(n)—Fl‘ -

w is a stable fixed point if G(w) = w
and G'(w) <1

G(w)

Convergence of G-urn processes
0.5 1
Almost surely, ¥ W, where
n—r oo
W is a (random) stable fixed point of
@ 0 ;
0 0.5 1
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w is a stable fixed point if G(w) = w 12
and G'(w) <1
Convergence of G-urn processes 5
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W is a (random) stable fixed point of
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B Urn models

N(n) := ## at step n. In a G-urn:

P <N(n+ 1) = N(n) + 1‘N(”) - w> = G(w) @

w is a stable fixed point if G(w) = w
and G'(w) <1
Convergence of G-urn processes

Almost surely, ¥ W, where
n—r oo

W is a (random) stable fixed point of
G.
Examples:

o if G(w) = w, W ~ U([0, 1])

o if G(w) = 2w® — 3w? + 2w,

W =0.5a.s.

n

¢ Use this on our two-dimensional process (N (n), N3(n))
If, for any x3 € [0, 1],

N1 (n) Ng(n)

= Wi,

P(Nl(n—l—l):Nl(n)—l—l‘ :w3> > G(wr)

n

~F(wy,w3)

and if every stable fixed point of G is larger than some ¢,
then N
lim inf 1(n) >c

n— 00 n
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Thank you !
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