A probabilistic reinforcement-learning algorithm to find shortest paths in a graph

Zoé Varin June 10th, 2025

Joint work with Cécile Mailler

Introduction

At each step n:

At each step n:

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

At each step n:

$$\mathbb{P}\left(u \to v\right) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$
 stopped at \mathcal{F}

(T) trace

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at \mathcal{F}

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

(T) trace

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$

stopped at \mathcal{F}

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

(T) trace

(LE) loop-erased

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at ${\mathcal F}$

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

(T) trace

(LE) loop-erased

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at \mathcal{F}

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at \mathcal{F}

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at $\mathcal F$

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e:u \in e} W_e(n)}$$

stopped at ${\mathcal F}$

•depositing pheromones on γ on the way back:

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \gamma}$$

(T) trace (LE) loop-erased

(G) geodesic

(T) trace

(LE) loop-erased

(G) geodesic

At each step n:

•weighted random walk:

$$\mathbb{P}(u \to v) = \frac{W_{uv}(n)}{\sum_{e: u \in e} W_e(n)}$$

stopped at \mathcal{F}

•depositing pheromones on γ on the way back:

$$\forall e, W_e(n+1) = W_e(n) + \mathbb{1}_{e \in \mathbf{y}}$$

Question: Do the ants find shortest paths from \mathcal{N} to \mathcal{F} ?

Pólya's urn:

Pólya's urn:

Pólya's urn:

Pólya's urn:

Pólya's urn:

Pólya's urn:

Asymptotic behavior:

Almost surely,

$$\frac{\# \bigoplus}{n} \underset{n \to \infty}{\longrightarrow} U \sim \mathcal{U}([0,1])$$

Geodesic (G) model on the lozenge graph

The lozenge graph:

Theorem (Kious, Mailler, Schapira [KMS22a])

Almost surely,

$$\frac{W_i(n)}{n} \xrightarrow[n \to \infty]{} \chi_i, \quad \forall 1 \le i \le 5$$

where $(\chi_i)_{1 \leq i \leq 5}$ is a random vector, such that almost surely,

$$\chi_1 = \chi_2 = 1 - \chi_4 = 1 - \chi_5 \in (0,1)$$
 and $\chi_3 = 0$.

Loop-erased (LE) model on series-parallel graphs

Recursive definition of series-parallel (SP) graphs (image from [KMS22a]):

Loop-erased (LE) model on series-parallel graphs

Recursive definition of series-parallel (SP) graphs (image from [KMS22a]):

Theorem (Kious, Mailler, Schapira [KMS22a])

If *G* is a SP graph, then in the loop-erased (LE) model, almost surely,

$$\frac{W_e(n)}{n} \underset{n \to \infty}{\longrightarrow} \chi_e, \quad \forall e \in E$$

where $(\chi_e)_{e \in E}$ is a random vector such that $\forall e, \chi_e \neq 0$ if and only if e belongs to a shortest path from N to F.

Conjecture for the loop-erased (LE) and geodesic (G) models

Conjecture [KMS22a]

Almost surely,

$$\frac{W_e(n)}{n} \underset{n \to \infty}{\longrightarrow} \chi_e, \quad \forall e \in E$$

where $(\chi_e)_{e \in E}$ is a random vector such that

(LE) model $\chi_e \neq 0$ a.s. if and only if e belongs to a shortest path from N to F

(G) model $\chi_e \neq 0$ a.s. **only if** e belongs to a shortest path from N to F

Conjecture for the loop-erased (LE) and geodesic (G) models

Conjecture [KMS22a]

Almost surely,

$$\frac{W_e(n)}{n} \underset{n \to \infty}{\longrightarrow} \chi_e, \quad \forall e \in E$$

where $(\chi_e)_{e \in E}$ is a random vector such that

- (LE) model $\chi_e \neq 0$ a.s. if and only if e belongs to a shortest path from N to F
- (G) model $\chi_e \neq 0$ a.s. **only if** e belongs to a shortest path from N to F

For L large enough, there exists e such that

$$\mathbb{P}\left(W_e(n)/n\to 0\right)>0$$

Trace (T) model ([KMS22b])

G is *tree-like* if $G \setminus \{\mathcal{F}\}$ is a tree.

Theorem [KMS22b]

If
$$G=(V,E)$$
 is $\textit{tree-like}$ and $a=\{\mathcal{N},\mathcal{F}\}\in E$ with multiplicity 1, then

$$\frac{W_a(n)}{n} \to 1 \qquad \text{and} \qquad \frac{W_e(n)}{n} \to 0, \quad \forall e \in E \backslash \{a\}$$

Trace (T) model ([KMS22b])

G is *tree-like* if $G \setminus \{\mathcal{F}\}$ is a tree.

Theorem [KMS22b]

If G = (V, E) is tree-like and $a = \{\mathcal{N}, \mathcal{F}\} \in E$ with multiplicity 1, then

$$rac{W_a(n)}{n}
ightarrow 1$$
 and

$$\frac{W_a(n)}{n} \to 1 \qquad \text{and} \qquad \frac{W_e(n)}{n} \to 0, \quad \forall e \in E \backslash \{a\}$$

Other examples: the cone, the lozenge and the (p, q)-path

$$\frac{W(n)}{n} \xrightarrow[n \to \infty]{} (1, 1/3, 1/3, 0)$$

$$\frac{W(n)}{n} \underset{n \to \infty}{\longrightarrow} (w^{\star}, 1/2, 1/2, w^{\star}, 1/2)$$

$$\frac{W(n)}{n} \underset{n \to \infty}{\longrightarrow} (1, 1/3, 1/3, 0) \qquad \frac{W(n)}{n} \underset{n \to \infty}{\longrightarrow} (w^\star, 1/2, 1/2, w^\star, 1/2) \qquad \frac{Wa_k(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha^k, \frac{Wb_k(n)}{n} \underset{n \to \infty}{\longrightarrow} \beta^k$$

Conjecture: deterministic limit for any graph without multiple-edges adjacent to F.

Multinest version

Multinest-version: at every step n, $\mathcal{N}(n) = \begin{cases} \mathcal{N}_1 & \text{with proba } \alpha_1 \in (0,1) \\ \mathcal{N}_2 & \text{with proba } \alpha_2 = 1 - \alpha_1 \end{cases}$.

Multinest version on triangle-SP graphs

Multinest-version: at every step n, $\mathcal{N}(n) = \begin{cases} \mathcal{N}_1 & \text{with proba } \alpha_1 \in (0,1) \\ \mathcal{N}_2 & \text{with proba } \alpha_2 = 1 - \alpha_1 \end{cases}$.

Triangle-SP graph: G_1 , G_2 , G_3 series-parallel graphs

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and the sink of G_i .
- $N_i(n)$ number of reinforcement in G_i before step n.

Remark: $\forall n, N_1(n) + N_2(n) = n$.

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and the sink of G_i .
- $N_i(n)$ number of reinforcement in G_i before step n.

Remark: $\forall n, N_1(n) + N_2(n) = n$.

Theorem (Mailler, V. 2025+)

We assume that $\ell_1 \leq \ell_2$. Almost surely,

• if
$$\ell_2 \geq \ell_1 + \ell_3$$
, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} 1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_2$,

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and the sink of G_i .
- $N_i(n)$ number of reinforcement in G_i before step n.

Remark: $\forall n, N_1(n) + N_2(n) = n$.

Theorem (Mailler, V. 2025+)

We assume that $\ell_1 \leq \ell_2$. Almost surely,

- if $\ell_2 \geq \ell_1 + \ell_3$, then $rac{N_1(n)}{n} \underset{n o \infty}{\longrightarrow} 1$ and $rac{N_3(n)}{n} \underset{n o \infty}{\longrightarrow} \alpha_2$,
- if $\ell_3 \geq \ell_1 + \ell_2$, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} 0$,

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and the sink of G_i .
- $N_i(n)$ number of reinforcement in G_i before step n.

Remark: $\forall n, N_1(n) + N_2(n) = n$.

Theorem (Mailler, V. 2025+)

We assume that $\ell_1 \leq \ell_2$. Almost surely,

- if $\ell_2 \geq \ell_1 + \ell_3$, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} 1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_2$,
- if $\ell_3 \geq \ell_1 + \ell_2$, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} 0$,
- otherwise $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} \beta_1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \beta_3$ (with $\beta_1, \beta_3 \in (0,1)$).

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and \not

Remark:
$$\forall n, N_1(n) + N_2(n) = n$$
.

• $N_i(n)$ number of reinforcement in G_i before sty $\beta_1 = \frac{\alpha_1\ell_1(\ell_3+\ell_2-\ell_1)}{\ell_1\ell_3+(\ell_2-\ell_1)((1-\alpha_1)(\ell_3-\ell_2)+\alpha_1\ell_1)}$ $\beta_3 = \frac{\alpha_1 \ell_3 (1 - \alpha_1)(\ell_1 + \ell_2 - \ell_3)}{(\ell_2 - \ell_1)(\ell_1 + \ell_2 - \ell_3)\alpha_1 + \ell_2(\ell_1 - \ell_2 + \ell_3)}$

Theorem (Mailler, V. 2025+)

We assume that $\ell_1 < \ell_2$. Almost surely,

- if $\ell_2 \geq \ell_1 + \ell_3$, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} 1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_2$,
- if $\ell_3 \geq \ell_1 + \ell_2$, then $rac{N_1(n)}{n} \underset{n o \infty}{\longrightarrow} \alpha_1$ and $rac{N_3(n)}{n} \underset{n o \infty}{\longrightarrow} 0$,
- otherwise $\frac{N_1(n)}{n} \xrightarrow[n \to \infty]{} \beta_1$ and $\frac{N_3(n)}{n} \xrightarrow[n \to \infty]{} \beta_3$ (with $\beta_1, \beta_3 \in (0,1)$).

For $i \in \{1, 2, 3\}$,

- $\ell_i := h_{\min}(G_i)$ distance between the source and the sink of G_i .
- $N_i(n)$ number of reinforcement in G_i before step n.

Remark: $\forall n, N_1(n) + N_2(n) = n$.

Theorem (Mailler, V. 2025+)

We assume that $\ell_1 \leq \ell_2$. Almost surely,

- if $\ell_2 \geq \ell_1 + \ell_3$, then $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} 1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \alpha_2$,
- if $\ell_3 \geq \ell_1 + \ell_2$, then $rac{N_1(n)}{n} \underset{n o \infty}{\longrightarrow} \alpha_1$ and $rac{N_3(n)}{n} \underset{n o \infty}{\longrightarrow} 0$,
- otherwise $\frac{N_1(n)}{n} \underset{n \to \infty}{\longrightarrow} \beta_1$ and $\frac{N_3(n)}{n} \underset{n \to \infty}{\longrightarrow} \beta_3$ (with $\beta_1, \beta_3 \in (0,1)$).

Moreover, almost surely: for all $e \in G_i$, $\frac{W_e(n)}{n} \xrightarrow[n \to \infty]{} \xi_e$, with $\xi_e \neq 0$ if and only if $\lim N_i(n)/n > 0$ and e belongs to a shortest path between two vertices of $\{\mathcal{N}_1, \mathcal{N}_2, \mathcal{F}\}$.

Toolbox & Proof

Conductance method

Effective conductance between two vertices - recursive definition:

(b)
$$C_G = C_{G_1} + C_{G_2}$$
 (c) $C_G = \frac{1}{1/C_{G_1} + 1/C_{G_2}}$

Conductance method

Effective conductance between two vertices - recursive definition:

Key idea: the probability that a random walk starting from S hits T_1 before T_2 is $\frac{C_{G_1}}{C_{G_1}+C_{G_2}}$.

Conductances in the (LE) model on SP graphs

On SP graphs:

Theorem (Kious, Mailler, Schapira [KMS22a])

$$\frac{n}{h_{\max}(G)} \le C_G(n) \le \frac{n+C}{h_{\min}(G)}$$

Conductances in the (LE) model on SP graphs

On SP graphs:

Theorem (Kious, Mailler, Schapira [KMS22a])

There exists a random variable K and constants α , C such that

$$\frac{n - Kn^{\alpha}}{h_{\min}(G)} \le C_G(n) \le \frac{n + C}{h_{\min}(G)}$$

Conductances in the (LE) model on SP graphs

On SP graphs:

Theorem (Kious, Mailler, Schapira [KMS22a])

There exists a random variable K and constants α , C such that

$$\frac{n - Kn^{\alpha}}{h_{\min}(G)} \le C_G(n) \le \frac{n + C}{h_{\min}(G)}$$

Example: If $\mathcal{N}(n) = \mathcal{N}_1$, the probability to reinforce in G_1 is

$$\frac{C_{G_1}(n)}{C_{G_1}(n) + \frac{C_{G_2}(n)C_{G_3}(n)}{C_{G_2}(n) + C_{G_3}(n)}}$$

Example: If $\mathcal{N}(n) = \mathcal{N}_1$, the probability to reinforce in G_1 is

$$\frac{C_{G_1}(n)}{C_{G_1}(n) + \frac{C_{G_2}(n)C_{G_3}(n)}{C_{G_2}(n) + C_{G_3}(n)}}$$

- Key to apply [KMS22a] results:
 - conditionnal on $\gamma \in G_1$, γ is distributed as γ_1 obtained by doing a (LE) step in G_1 only
 - conditionnal on $\gamma \in G_3 \cup G_2$, γ is distributed as $\gamma_3 \gamma_2$ obtained by doing independent (LE) steps in G_3 and G_2 only.

$$\frac{C_{G_1}(n)}{C_{G_1}(n) + \frac{C_{G_2}(n)C_{G_3}(n)}{C_{G_2}(n) + C_{G_3}(n)}}$$

- Key to apply [KMS22a] results:
 - conditionnal on $\gamma \in G_1$, γ is distributed as γ_1 obtained by doing a (LE) step in G_1 only
 - conditionnal on $\gamma \in G_3 \cup G_2$, γ is distributed as $\gamma_3 \gamma_2$ obtained by doing independent (LE) steps in G_3 and G_2 only.

Corollary

For every $i \in \{1, 2, 3\}$,

$$\frac{C_{G_i}(n)}{N_i(n)} \xrightarrow[n \to \infty]{} \frac{1}{h_{\min}(G_i)} = \frac{1}{\ell_i}$$

(with bounds for the convergence speed)

Example: If $\mathcal{N}(n) = \mathcal{N}_1$, the probability to reinforce in G_1 is

- 🤋 Key to apply [KMS22a] results:
 - conditionnal on $\gamma \in G_1$, γ is distributed as γ_1 obtained as γ_1 only
 - conditionnal on $\gamma \in G_3 \cup G_2$, γ is distributed as $\gamma_3 \gamma_2$ obtained by doing independent (LE) steps in G_3 and G_2 only.

Corollary

For every $i \in \{1, 2, 3\}$,

$$\frac{C_{G_i}(n)}{N_i(n)} \underset{n \to \infty}{\longrightarrow} \frac{1}{h_{\min}(G_i)} = \frac{1}{\ell_i}$$

(with bounds for the convergence speed)

A process $(X_n)_{n\geq 0}$ is a stochastic approximation if

$$X_{n+1} = X_n + \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

A process $(X_n)_{n\geq 0}$ is a stochastic approximation if

$$X_{n+1} = X_n + \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

and if

• $(X_n)_{n\geq 0}$ is adapted to some filtration $(\mathcal{F}_n)_{n\geq 0}$, and takes value in some convex compact $\mathcal{E}\subseteq\mathbb{R}^d$,

A process $(X_n)_{n\geq 0}$ is a stochastic approximation if

$$X_{n+1} = X_n + \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

and if

- $(X_n)_{n\geq 0}$ is adapted to some filtration $(\mathcal{F}_n)_{n\geq 0}$, and takes value in some convex compact $\mathcal{E}\subseteq\mathbb{R}^d$,
- $F: \mathcal{E} \to \mathbb{R}^d$ is a Lipschitz function,

A process $(X_n)_{n\geq 0}$ is a stochastic approximation if

$$X_{n+1} = X_n + \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

and if

- $(X_n)_{n\geq 0}$ is adapted to some filtration $(\mathcal{F}_n)_{n\geq 0}$, and takes value in some convex compact $\mathcal{E}\subset\mathbb{R}^d$.
- $F: \mathcal{E} \to \mathbb{R}^d$ is a Lipschitz function,
- the noise ξ_{n+1} is \mathcal{F}_{n+1} -measurable and such that $\forall n, \mathbb{E}_n \left[\xi_{n+1} \right] = 0$,
- the remainder term r_n is \mathcal{F}_n -measurable and such that $\sum_n n^{-1} ||r_n|| < \infty$ a.s.

A process $(X_n)_{n\geq 0}$ is a **stochastic approximation** if

$$X_{n+1} = X_n + \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

and if

- $(X_n)_{n\geq 0}$ is adapted to some filtration $(\mathcal{F}_n)_{n\geq 0}$, and takes value in some convex compact $\mathcal{E}\subset\mathbb{R}^d$.
- $F: \mathcal{E} \to \mathbb{R}^d$ is a Lipschitz function,
- the noise ξ_{n+1} is \mathcal{F}_{n+1} -measurable and such that $\forall n, \mathbb{E}_n \left[\xi_{n+1} \right] = 0$,
- the remainder term r_n is \mathcal{F}_n -measurable and such that $\sum_n n^{-1} ||r_n|| < \infty$ a.s.

Claim: the process $\left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right)_{n>0}$ is a stochastic approximation !

Illustration of the ODE method

A process $(X_n)_{n\geq 0}$ is a stochastic approximation if

$$X_{n+1} - X_n = \frac{F(X_n) + \xi_{n+1} + r_n}{n+1}, \ \forall n$$

ODE method

If there exists p_1, \ldots, p_k s.t. for any $w \in [0, 1]^2$, the solution of the ODE $\dot{y} = F(y)$ starting at w converges to some p_i , then almost surely,

$$\exists i: \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right) \underset{n \to \infty}{\longrightarrow} p_i$$

We let,
$$\forall n, N(n) = (N_1(n), N_3(n)), \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right)$$
 and $I = \left(\mathbb{1}_{N_i(n+1)=N_i(n)+1}\right)_{i=1,3}$

$$\frac{N(n+1)}{n+1} = \frac{N(n)+I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - \frac{N(n)}{n}\right)$$

$$= \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1}$$

We let,
$$\forall n, N(n) = (N_1(n), N_3(n)), \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right)$$
 and $I = \left(\mathbb{1}_{N_i(n+1)=N_i(n)+1}\right)_{i=1,3}$

$$\frac{N(n+1)}{n+1} = \frac{N(n)+I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - \frac{N(n)}{n} \right)$$
$$= \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1}$$

$$\mathbb{E}[I|\hat{N}(n)]_1 = \alpha_1 \frac{C_{G_1}(n)}{C_{G_1}(n) + \frac{C_{G_2}(n)C_{G_3}(n)}{C_{G_2}(n) + C_{G_2}(n)}} + \alpha_2 \left(1 - \frac{C_{G_2}(n)}{C_{G_2}(n) + \frac{C_{G_1}(n)C_{G_3}(n)}{C_{G_2}(n) + C_{G_2}(n)}}\right)$$

$$\begin{split} \text{We let, } \forall n, N(n) &= (N_1(n), N_3(n)), \, \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right) \text{ and } I = \left(\mathbbm{1}_{N_i(n+1) = N_i(n) + 1}\right)_{i=1,3} \\ \frac{N(n+1)}{n+1} &= \frac{N(n) + I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I \right) & \text{For every } i \in \{1, 2, 3\}, \\ & \mathbb{C}_{G_i}(n) \xrightarrow{N_i(n)} \frac{1}{N_i(n)} \xrightarrow{h_{\min}(G_i)} = \frac{1}{\ell_i} \\ & = \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1} \\ & \mathbb{C}_{G_1(n)} \xrightarrow{C_{G_1}(n)} \frac{C_{G_1(n)}}{C_{G_1(n)} + \frac{C_{G_2(n)C_{G_3}(n)}}{C_{G_2(n)+C_{G_3}(n)}}} + \alpha_2 \left(1 - \frac{C_{G_2}(n)}{C_{G_2(n)+C_{G_3}(n)}} \right) \end{split}$$

$$\begin{aligned} &\text{We let, } \forall n, N(n) = (N_1(n), N_3(n)), \, \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right) \text{ and } I = \left(\mathbbm{1}_{N_i(n+1) = N_i(n) + 1}\right)_{i=1,3} \\ &\frac{N(n+1)}{n+1} = \frac{N(n) + I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I \right) & \text{For every } i \in \{1, 2, 3\}, \\ & = \frac{N(n)}{N_i(n)} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1} & \\ & = \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1} & \\ & = \frac{I(n)}{n} + \frac{I(n)}{I(n)} + \frac$$

We let,
$$\forall n, N(n) = (N_1(n), N_3(n)), \ \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right)$$
 and $I = \left(\mathbbm{1}_{N_i(n+1) = N_i(n) + 1}\right)_{i=1,3}$

$$\begin{split} \frac{N(n+1)}{n+1} &= \frac{N(n)+I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - \frac{N(n)}{n} \right) \\ &= \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - p(\hat{N}(n)) + p(\hat{N}(n)) - \frac{N(n)}{n} \right) \\ &= \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1} \end{split}$$

$$\mathbb{E}[I|\hat{N}(n)]_{1} = \alpha_{1} \frac{C_{G_{1}}(n)}{C_{G_{1}}(n) + \frac{C_{G_{2}}(n)C_{G_{3}}(n)}{C_{G_{2}}(n) + C_{G_{3}}(n)}} + \alpha_{2} \left(1 - \frac{C_{G_{2}}(n)}{C_{G_{2}}(n) + \frac{C_{G_{1}}(n)C_{G_{3}}(n)}{C_{G_{1}}(n) + C_{G_{3}}(n)}}\right)$$

$$\sim \alpha_{1} \frac{\frac{w_{1}/\ell_{1}}{w_{1}/\ell_{1} + \frac{w_{2}/\ell_{2}w_{3}/\ell_{3}}{w_{2}/\ell_{2} + w_{3}/\ell_{3}}} + \alpha_{2} \left(1 - \frac{w_{2}/\ell_{2}}{w_{2}/\ell_{2} + \frac{w_{1}/\ell_{1}w_{3}/\ell_{3}}{w_{1}/\ell_{1} + w_{3}/\ell_{3}}}\right) =: p_{1}(w_{1}, w_{2}, w_{3}) \text{ (with } w_{i} = \hat{N}_{i}(n))$$

$$= \sum_{i=1}^{15/2} \frac{15/2}{w_{1}/\ell_{1} + w_{2}/\ell_{2}} \left(1 - \frac{w_{2}/\ell_{2}}{w_{2}/\ell_{2} + \frac{w_{1}/\ell_{1}w_{3}/\ell_{3}}{w_{1}/\ell_{1} + w_{3}/\ell_{3}}}\right) =: p_{1}(w_{1}, w_{2}, w_{3}) \text{ (with } w_{i} = \hat{N}_{i}(n))$$

We let, $\forall n, N(n) = (N_1(n), N_3(n)), \hat{N}(n) = \left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right)$ and $I = \left(\mathbb{1}_{N_i(n+1)=N_i(n)+1}\right)_{i=1,3}$

$$\begin{split} \frac{N(n+1)}{n+1} &= \frac{N(n)+I}{n+1} = \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - \frac{N(n)}{n} \right) \\ &= \frac{N(n)}{n} + \frac{1}{n+1} \left(I - \mathbb{E}[I|\hat{N}(n)] + \mathbb{E}[I|\hat{N}(n)] - p(\hat{N}(n)) + p(\hat{N}(n)) - \frac{N(n)}{n} \right) \\ &= \frac{N(n)}{n} + \frac{F(\hat{N}(n)) + \xi_{n+1} + r_n}{n+1} \end{split}$$

And $\sum_{n} \frac{||r_n||}{r} < \infty$, because $\forall i \in \{1, 2, 3\}, N_i(n) \geq n^{\epsilon_i}$.

$$\mathbb{E}[I|\hat{N}(n)]_{1} = \alpha_{1} \frac{C_{G_{1}}(n)}{C_{G_{1}}(n) + \frac{C_{G_{2}}(n)C_{G_{3}}(n)}{C_{G_{2}}(n) + C_{G_{3}}(n)}} + \alpha_{2} \left(1 - \frac{C_{G_{2}}(n)}{C_{G_{2}}(n) + \frac{C_{G_{1}}(n)C_{G_{3}}(n)}{C_{G_{1}}(n) + C_{G_{3}}(n)}}\right)$$

$$\sim \alpha_{1} \frac{\frac{w_{1}/\ell_{1}}{w_{1}/\ell_{1} + \frac{w_{2}/\ell_{2}w_{3}/\ell_{3}}{w_{2}/\ell_{2} + w_{3}/\ell_{3}}} + \alpha_{2} \left(1 - \frac{w_{2}/\ell_{2}}{w_{2}/\ell_{2} + \frac{w_{1}/\ell_{1}w_{3}/\ell_{3}}{w_{1}/\ell_{1} + w_{3}/\ell_{3}}}\right) =: p_{1}(w_{1}, w_{2}, w_{3}) \text{ (with } w_{i} = \hat{N}_{i}(n))$$

$$= \sum_{i=1}^{N} \frac{15/20}{i} \left(1 - \frac{w_{2}/\ell_{2}}{w_{2}/\ell_{2} + \frac{w_{1}/\ell_{1}w_{3}/\ell_{3}}{w_{1}/\ell_{1} + w_{3}/\ell_{3}}}\right) =: p_{1}(w_{1}, w_{2}, w_{3})$$

$$= \sum_{i=1}^{N} \frac{15/20}{i} \left(1 - \frac{w_{2}/\ell_{2}}{w_{2}/\ell_{2} + \frac{w_{1}/\ell_{1}w_{3}/\ell_{3}}{w_{1}/\ell_{1} + w_{3}/\ell_{3}}}\right) =: p_{1}(w_{1}, w_{2}, w_{3})$$

Convergence of the process thanks to the ODE method

(example with $\ell_1=2$, $\ell_2=4$ and $\ell_3=3$)

What does not happen:

Conclusion: any solution to $\dot{y} = F(y)$ starting in $[0,1]^2$ converges

$$ightarrow \left(rac{N_1(n)}{n}, rac{N_3(n)}{n}
ight)$$
 converges

Eliminating the "bad" zeros

(example with $\ell_1=2,\,\ell_2=4$ and $\ell_3=3$)

Lemma

• $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$

Eliminating the "bad" zeros

(example with $\ell_1 = 2$, $\ell_2 = 4$ and $\ell_3 = 3$)

- $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$
- if $\ell_3 < \ell_1 + \ell_2, \exists c > 0$:

$$\liminf_{n \to \infty} \frac{N_3(n)}{n} \ge c$$

Eliminating the "bad" zeros

(example with $\ell_1 = 2$, $\ell_2 = 4$ and $\ell_3 = 3$)

Lemma

- $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$
- if $\ell_3 < \ell_1 + \ell_2$, $\exists c > 0$:

$$\liminf_{n \to \infty} \frac{N_3(n)}{n} \ge c$$

• if $\ell_2 < \ell_1 + \ell_3$, $\exists c' < 1$:

$$\limsup_{n \to \infty} \frac{N_1(n)}{n} \le c'$$

 $N(n) := \# \bigoplus$ at step n. In a classical Pólya urn:

$$\mathbb{P}\left(N(n+1) = N(n) + 1 \middle| \frac{N(n)}{n} = w\right) = w$$

 $N(n) := \# \bigoplus$ at step n. In a G-urn:

$$\mathbb{P}\left(N(n+1) = N(n) + 1 \middle| \frac{N(n)}{n} = w\right) = G(w)$$

Urn models

 $N(n) := \# \bigoplus$ at step n. In a G-urn:

$$\mathbb{P}\left(N(n+1) = N(n) + 1 \middle| \frac{N(n)}{n} = w\right) = G(w)$$

w is a stable fixed point if G(w)=w and $G^{\prime}(w)\leq 1$

Convergence of G-urn processes

Almost surely, $\frac{N(n)}{n} \xrightarrow[n \to \infty]{} W$, where W is a (random) stable fixed point of G.

 $N(n) := \# \bigoplus$ at step n. In a G-urn:

$$\mathbb{P}\left(N(n+1) = N(n) + 1 \middle| \frac{N(n)}{n} = w\right) = G(w)$$

w is a stable fixed point if G(w) = wand G'(w) < 1

Convergence of G-urn processes

Almost surely, $\frac{N(n)}{n} \xrightarrow[n \to \infty]{} W$, where W is a (random) stable fixed point of G.

Examples:

- if $G(w) = w, W \sim \mathcal{U}([0,1])$
- if $G(w) = 2w^3 3w^2 + 2w$. $W = 0.5 \, \text{a.s.}$

 $N(n) := \# \bigoplus$ at step n. In a G-urn:

$$\mathbb{P}\left(N(n+1) = N(n) + 1 \middle| \frac{N(n)}{n} = w\right) = G(w)$$

w is a stable fixed point if G(w) = wand $G'(w) \leq 1$

Convergence of G-urn processes

Almost surely, $\frac{N(n)}{n} \xrightarrow[n \to \infty]{} W$, where W is a (random) stable fixed point of G.

Examples:

- if G(w) = w, $W \sim \mathcal{U}([0,1])$
- if $G(w) = 2w^3 3w^2 + 2w$. $W = 0.5 \, \text{a.s.}$

 Ψ Use this on our two-dimensional process $(N_1(n), N_3(n))$ If, for any $x_3 \in [0, 1]$,

$$\underbrace{\mathbb{P}\left(N_1(n+1) = N_1(n) + 1 \middle| \frac{N_1(n)}{n} = w_1, \frac{N_3(n)}{n} = w_3\right)}_{\sim F(w_1, w_3)} \ge G(w_1)$$

and if every stable fixed point of G is larger than some c. then

$$\liminf_{n \to \infty} \frac{N_1(n)}{n} \ge c$$

Conclusion in the different cases

Figure 3: $\ell_1 = 2$, $\ell_2 = 4$ and $\ell_3 = 3$. $\left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right) \to (\beta_1, \beta_3)$

- $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$
- if $\ell_3 < \ell_1 + \ell_2$, $\exists c > 0$:

$$\liminf_{n \to \infty} \frac{N_3(n)}{n} \ge c$$

• if
$$\ell_2 < \ell_1 + \ell_3$$
, $\exists c' < 1$:

$$\limsup_{n \to \infty} \frac{N_1(n)}{n} \le c'$$

Conclusion in the different cases

Figure 3: $\ell_1 = 2$, $\ell_2 = 6$ and $\ell_3 = 3$. $\left(\frac{N_1(n)}{n}, \frac{N_3(n)}{n}\right) \to (1, \alpha_2)$

- $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$
- if $\ell_3 < \ell_1 + \ell_2, \exists c > 0$:

$$\liminf_{n \to \infty} \frac{N_3(n)}{n} \ge c$$

• if
$$\ell_2 < \ell_1 + \ell_3$$
, $\exists c' < 1$:

$$\limsup_{n \to \infty} \frac{N_1(n)}{n} \le c'$$

Conclusion in the different cases

Figure 3: $\ell_1=2,\,\ell_2=4$ and $\ell_3=9.$ $\left(\frac{N_1(n)}{n},\frac{N_3(n)}{n}\right)\to(\alpha_1,0)$

- $\liminf_{n\to\infty} \frac{N_1(n)}{n} \ge \alpha_1$
- if $\ell_3 < \ell_1 + \ell_2$, $\exists c > 0$:

$$\liminf_{n \to \infty} \frac{N_3(n)}{n} \ge c$$

• if
$$\ell_2 < \ell_1 + \ell_3$$
, $\exists c' < 1$:

$$\limsup_{n \to \infty} \frac{N_1(n)}{n} \le c'$$

Thank you!

References

Daniel Kious, Cécile Mailler, and Bruno Schapira.

Finding geodesics on graphs using reinforcement learning.

Ann. Appl. Probab., 32(5):3889-3929, 2022.

Daniel Kious, Cécile Mailler, and Bruno Schapira.

The trace-reinforced ants process does not find shortest paths.

J. Éc. polytech. Math., 9:505-536, 2022.

Russell Lyons and Yuval Peres.

Probability on Trees and Networks.

Cambridge University Press, New York, 2016.

Available at https://rdlyons.pages.iu.edu/.

Robin Pemantle.

A survey of random processes with reinforcement.

Probability surveys, 4:1–79, 2007.