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hat is a valid spreading policy ?
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What is a valid spreading policy ?

t=k+e¢ t=k+e+de dl + dr = de

=g
up u3 ug u1 dlusz Ux dr

dl and dr only depend on what is inside the current component of uy (one of the O§k+€))

invariance by translation of the process
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Examples of valid spreading policies

: OTE, m (studied by Bertoin, Miermont [BMO06])

— R
T T

]
0 Uuo uyuz 1:O‘mod1

Diffusion to the closest side of the occupied component (with or without reevaluation)
/S
dl=0 dr

Range of a Brownian motion
Short-sighted jam spreader
For any ball, pick at random some spreading policy

Example that is not a valid spreading policy:
U

dr=20

e diffusion towards the closest occupied block

Qm
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A universality result

We fix mo, ..., me_1, with > m; < 1. Let o ~U(Spw). Let R=1— Zf'(;ol mj.
Theorem (Marckert-V. 25+)
Independently of the diffusion policy,
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Lengths of the occupied blocks:
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Lengths of the occupied blocks: a formula for P (|O%)| = (Mo, ..., My_1))

ﬁ(\F(k)l‘(mow“ my_1) <—3 ‘ (3 m;,0,---, ))

As a process in k, the following distributions are known and do not depend on the dispersion
policy:
L(NK) k> 0)

L{{I0W[}},k >0)
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Some background on the continuous and discrete parking models

[ Discrete parking

introduced by Konheim, Weiss
[KW66], studied by Knuth [Knu73]

| S

asymptotic behavior studied by
Chassaing, Louchard [CLO2]
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One great principle

Consider 4 uniform points on [0, 1].

J

Conditional on

Then: | | | |
4 uniform points in 3 uniform points in
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Main idea of the proof

dl dr

Properties that are invariant throughout the dispersion:

the positions of the peaks are uniform on the smaller cycle Cr of size R=1—Y_ m;

during the dispersion, the probability that the growing peak coalesces with other peaks depends
only on the size of the drop

the distributions of the peaks’ number, heights and positions do not depend on the diffusion policy
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Main idea of the proof

dl dr
> —
—
L (\F(“)| ‘ (mo, - - - 7,-,7,(71)) -7 <“:<k)‘ ’ (> m;,0,--- ,0)> (_/
o |F) .
Properties that are invariant throughout the dispersion: /% ‘+ ~ Dirichlet(N®); 1,...,1)

the positions of the peaks are uniform on the smaller cycle Cr of size R=1—Y_ m; |

during the dispersion, the probability that the growing peak coalesces with other peaks depends
only on the size of the drop
the distributions of the peaks’ number, heights and positions do not depend on the diffusion policy

— even more surprisingly, the peaks number and positions do not depend on which peak is extended
by the diffusion 8/19
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Distribution of the number of blocks N)

C <|F(k)| ‘ (mo, - - 7mk_1)) —C (/:73| ‘ > m;0,--- ,0))

Theorem (Distribution of N())
Let B(k — 1, R) ~ Binomial(k — 1, R), then

NGO DLy Bk —1,R)

k—1
NE =14) 1,4
j=1
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Distribution of the occupied blocks

(10=1) = (o) =2 (S )

and, conditional on N =1, O is reduced to an interval [A, A+ 3" mj]
with A uniform on C
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Distribution of the occupied blocks

(10=1) = (o) =2 (S )

and, conditional on N*) =1, 0¥ is reduced to an interval [A, A+ > m]
with A uniform on C

Theorem

b—1
P (|o<k>| - (Mo,...,Mb_l)) =T(Mo,...,Ms—1) > {H QM;, IPil) Ly, e, m=m,

PeP(k,b) Le=0
where
- P(k, b) is the set of partitions P = (Po,...,Ps_1) of {1,..., k — 1} into b non empty parts,

_ b—1 _ b
- T(M07 °ccog Mb—l) = MO = (zb’\:’ig' + a )l:ﬂM[) :
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Summary of universality results

Theorem
For any continuous model with valid spreading policy, the following distributions are explicit

and independent of the spreading policy:

With k fixed:
E(O(k),F(k))
r (|F(k)\ ‘ (mo, - 7mk71)) =L <|E3| ’ >-m;,o0,--- ,0)>
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Asymptotic results

With n (random) masses, n — oo, for example if

Vi, m; = 1/n and consider the process until time n

Vi, m; = {;/n (where ¢; are i.i.d. with E[{;] < oo and satisfy some regularity assumption),
until time t = sup{k : Zf:o m; < 1}.
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until time t = sup{k : Z;{:o m; < 1}.

Corollary (Bertoin, Miermont [BMO06]; Marckert, V. 25+

There exists a limit process S such that Q
LargestBlock( O
(BBt 1<) ) (Somedrc(e)i1 7<),
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Key tool to encode the initial configuration: the “collecting path”
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Key tool to encode the initial configuration: the “collecting path”

Sx = —X+ Z}Za/\ﬁj mj]lujgx, Vx € [07 1]

§[a7a+1] converges (in distribution) to e, and

(SortedExc(S[a7a+1]);) ﬂ) (SortedExc(e(A))i)

1<i<j sy 1<i<j
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Discrete space and discrete masses

on Cy,:={0/n,--- ,(n—1)/n} CC:
masses arrive on C, : Vi, u; ~ U(Cp,)
they cover intervals with extremities in C,,

their spreading policy is only invariant by 1/n rotation
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on Cy,:={0/n,--- ,(n—1)/n} CC:
masses arrive on C, : Vi, u; ~ U(Cp,)
they cover intervals with extremities in C,,
their spreading policy is only invariant by 1/n rotation

Theorem (Similar universality result)

For any discrete model with valid spreading policy, the following distributions are explicit and
independent of the spreading policy:

With k fixed:

ﬁ(O(k), F(k))

Ve (|F(k)\ ‘ (mo, - - - ,mk—l)) =L (lﬁﬂ ’ (3> mi,0,- - ,0)>
As a process in k:

L(N® k> 0)

LH{{I0M[}}, k = 0)
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Discrete VS Continuous model

(d) . .
NG = 1 4 Binomial(k — 1, R) Nk @ p Binomial(k — 1, R — 1/n)
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NG = 1 4 Binomial(k — 1, R) Nk @ p Binomial(k — 1, R — 1/n)

Asymtotic behavior when k = n— A\y/nand Vi,m; =1/n

CoNK P NG P 1
Number of blocks: oo A ‘ Number of blocks: v el AM1—e1)

Large block sizes [BM06, CL02]: (L2E=tBlosi® 1 < < j) 1 (SortedExc(eM);,1 <7 < J)

n— o0
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Construction cost of discrete
models



The parking model

The parking model:
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ith largest block of occupied
vertices.

Theorem [Pittel 87, Chassaing-Louchard 02]

If Ne = Ne(n) ~ an, a > 0, then LargestBlock®) converges in probability:
log n — 3/2loglog n + o).

a—1-—loga

LargestBIock(l) =

1 p
If Ne < /n, then m — 1.

(1)
If Ne > +/n, then M 2o

Description of the phase transition: si Ng/\/n — A >0,
(M,i > 1) L) (SortedExc(e(A)),i > 1).
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The parking model:
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Free vertices: Nfp = n — # &y
LargestBlock® = size of the
ith largest block of occupied
vertices.

Generalised parking model:
local and invariant under
rotation parking policy
(Nadeau 23)

Theorem [Pittel 87, Chassaing-Louchard 02]

If Ne = Ne(n) ~ an, a > 0, then LargestBlock®) converges in probability:
_ logn— 3/2loglogn + o).

a—1-—loga

LargestBIock(l)

1 p
If Ne < /n, then m — 1.

(1)
If Ne > +/n, then M 2o

Description of the phase transition: si Ng/y/n — X >0,
<7Large5tf'°°k(') S0 > 1) @ (SortedExc(e(A)),i > 1).

Theorem (V. 25 - Universality of the distribution of the set of free vertices
HF for the generalised parking)

Ne
P (HF - X) - nn}NF (&7 N ) H (6 +1)5

ot ) 4L
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(Nadeau 23)
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Construction cost of the parking

Definition of the cost For the parking:

GlobalCost,(r) = Z COSt,‘B[
i—1

G G G G > 6> G 6 o>
where P
e B; is the size of the block in which the ith car falls

° Costﬂ;i is a random variable whose distribution depends only on B; Cost; ~ Unif ([L, 4])
¢~ )
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Construction cost of the parking

Definition of the cost For the parking:

GlobalCost,(r Z CostB

‘ﬁ‘ﬁ‘ﬁ‘“‘a‘%ﬁ%‘ﬁ‘ 1 Aﬁxﬁx
where

e B; is the size of the block in which the ith car falls

° Costﬂ;l. is a random variable whose distribution depends only on B; Cost; ~ Unif ([L, 7])
¢~ 3

Construction cost of the parking

: i lllustration de fol edt:
If r = n, (Flajolet-Poblete-Viola 98)

uy,\n

lobalCost, 1 J, fudf
%ﬁ;(ﬂ g/ endt e ,\ \
n n—oo fq |
i h{‘ m', ”M
i i I w‘l.&\
". 1 y l‘#
[y ‘
| a\(" \ /'w‘
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Construction cost of the parking

Definition of the cost For the parking:

GlobalCost,(r) = Z COSt,‘B[
i—1

G G G G > 6> G 6 o>
where P
e B; is the size of the block in which the ith car falls

° Costﬂ;i is a random variable whose distribution depends only on B; Cost; ~ Unif ([L, 7])
¢~ )

Construction cost of the parking
If r = n, (Flajolet-Poblete-Viola 98)

1
Globalgost,,(r) ﬂ}/ e dt M’M"’\Ww\
n3/2 n—oo Jo

If r = |n— Ay/n], (Chassaing-Louchard 02)

lllustration de [ e (t) — infs<, e (s)dt:

GlobalCost,(r) ),

n3/2 n—oo

1
/ e (t) — inf eM(s)dt=: F()\)
0 s<t
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Construction cost of the parking

Definition of the cost For the parking:

GlobalCost,(r) = Z COSt,‘B[
i—1

‘ﬁ‘ﬁ‘ﬁ‘g‘a‘ﬁ‘ﬁ‘a‘ 1 Aﬁxﬁx
where

e B; is the size of the block in which the ith car falls

° Costﬂ;l. is a random variable whose distribution depends only on B; Cost; ~ Unif ([L, 7])
¢~ 3

Construction cost of the parking Theorem (Generalised parking - Marckert-
If r = n, (Flajolet-Poblete-Viola 98) V.25+)
GlobalCostn(r) (@) /1 Convergence in distribution of
—_— — edt
n3/2 n—o0 Jo GlobalCost, (|.n — A/n])

Vnag
If r = |n— Ay/n], (Chassaing-Louchard 02)

towards an explicit limit; under some hypotheses on

1
Clole=l Gasial ) R / e(A)(t) - |th em(s)dt:: F(X) E[Cost«] and Var(Costy)
0 55

n3/2 n—oo
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Construction cost of the parking

Definition of the cost

15 iy
GlobalCost,(r Z Costp, / "
N A T M M»‘w
where k M
e B; is the size of the block in which the ith car falls 'A "’\
° Costﬂ;l. is a random variable whose distribution depends only on B; 3
0 Iy © @) 1
Construction cost of the parking When cars do random walks of parameter p
If r = n, (Flajolet-Poblete-Viola 98) If p#£1/2,
GlobalCosts(r) (&), [ GlobalCost,(|ln— AvAl) @, 1 ..
st & [ /2 e Bp—1]
If p=1/2,

If r = |n— Ay/n], (Chassaing-Louchard 02) Bl Cesi{l— )\fJ) 1

G(A)

n~>oo 3

GlobalCost,(r) ),

n3/2 n—oo

1 n5/2

/ e (t) — inf eM(s)dt=: F()\)
0 = where G(\) = fo o (R(x,y) = L(x, ¥))Ls(x,y)>rdydx
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Partial idea of the proof

Measure encoding the size of the blocks : 151

M) = f2k<n /i OB/

‘,\ H

M) 9 g, f V/“
J

(for the vague topology on the set of Borelian measures on (0,1))

If £ is such that E [Cost;] O f(k), then
—00

GlobalCost, (|n — A\y/n]) 1 _ (nA)y (9
NGE ~ Vna, k<,§ﬁ F(Be) = {F, M) =2 (F M)

where (f, My (e fo ﬁ (R(x,y) — L(x,y))]ls(x"y)z)\dydx.
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Partial idea of the proof

Measure encoding the size of the blocks :

M) = f2k<n /i OB/

M) 9 g,

(for the vague topology on the set of Borelian measures on (0,1))

If £ is such that E [Cost;] O f(k), then
—00

GlobalCost, (|n — Av/n))
Vnoy,

where (f, M, (e fo




& Thank you ! é
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