

Continuous (and discrete) dispersion models on the circle

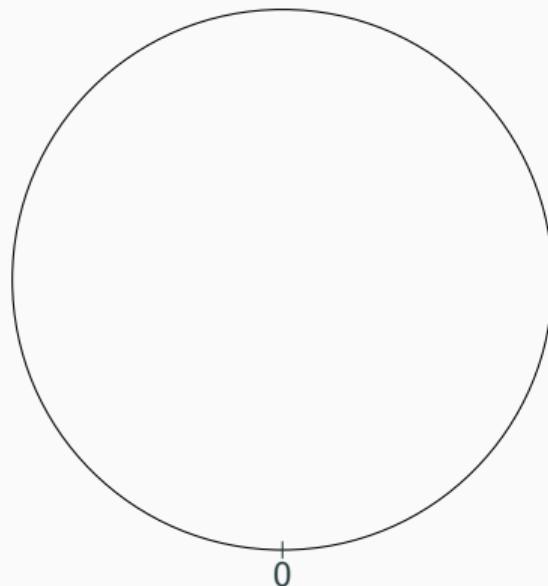
Zoé Varin

November 27th, 2025

Joint work with Jean-François Marckert

Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

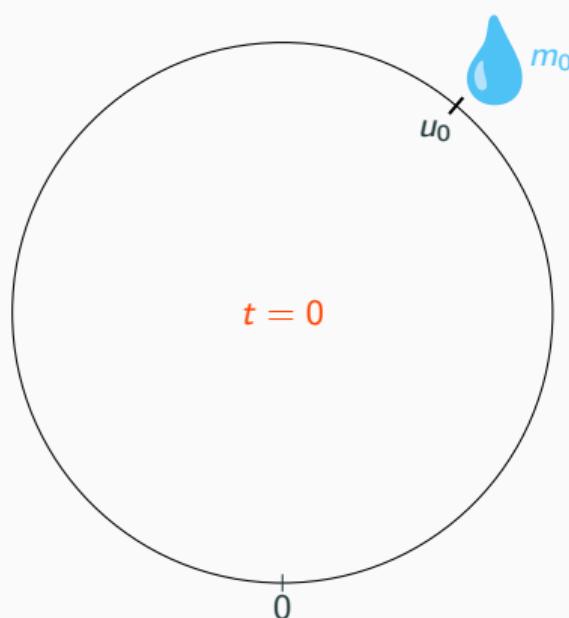


Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$

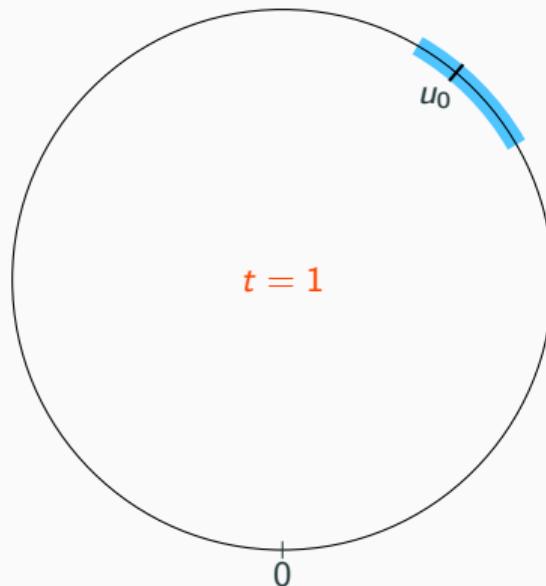


Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

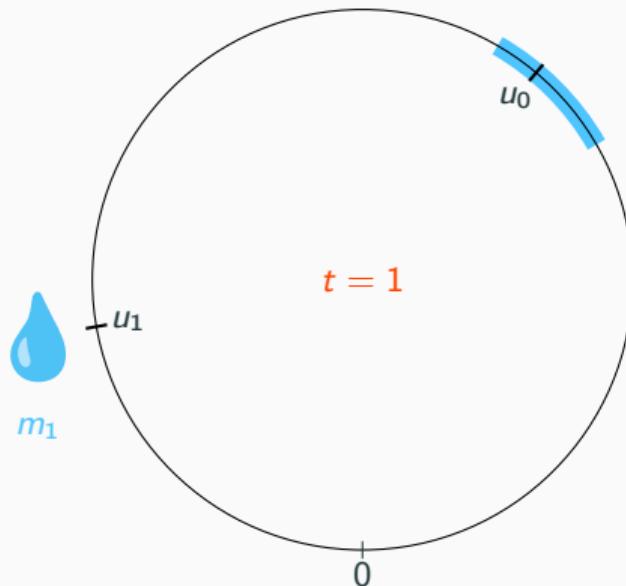


Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

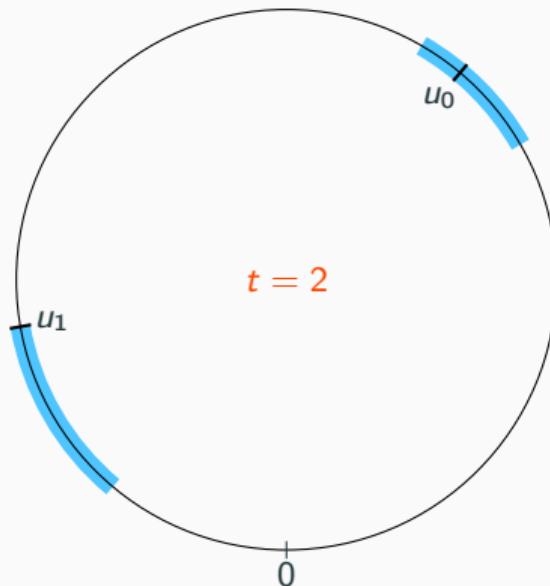


Definition of the model

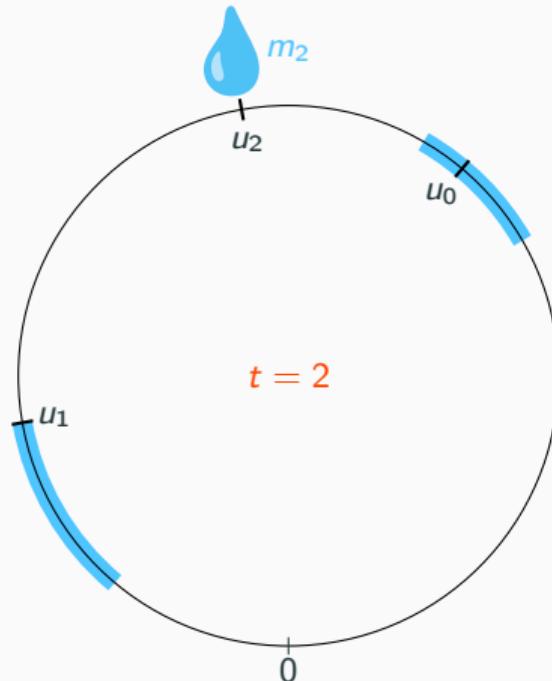
State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



Definition of the model



State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

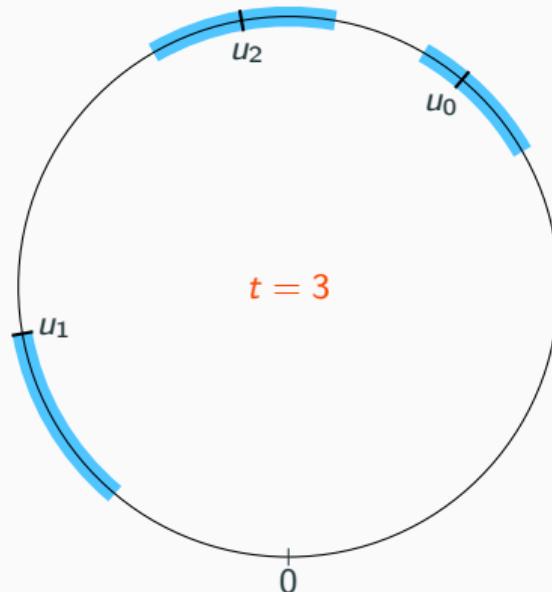
- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Definition of the model

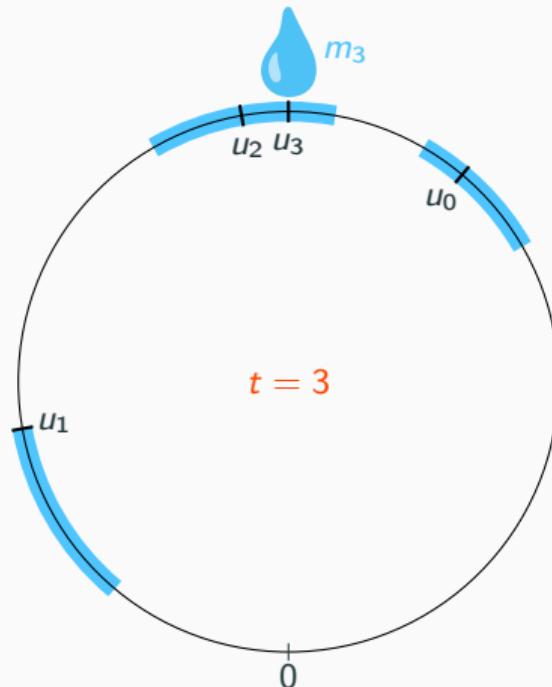
State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



Definition of the model



State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

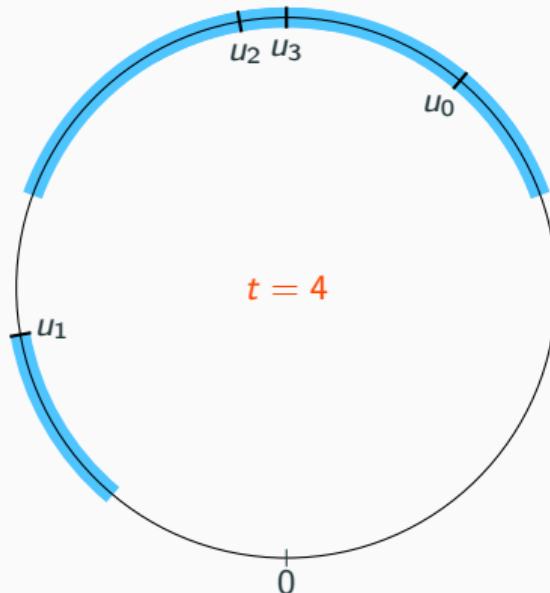
- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

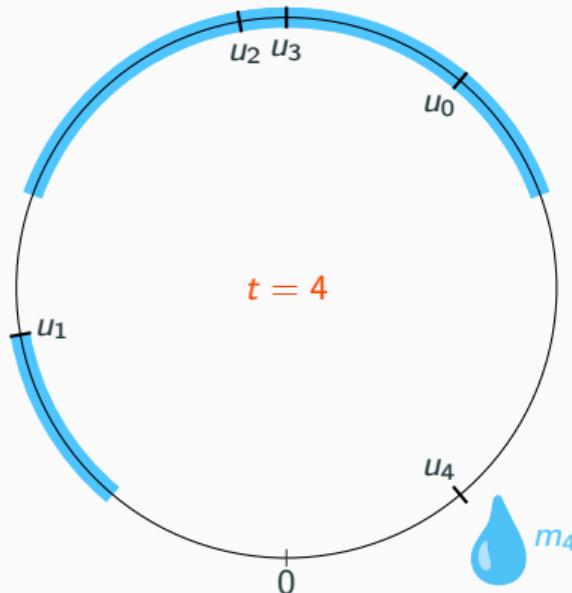


Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

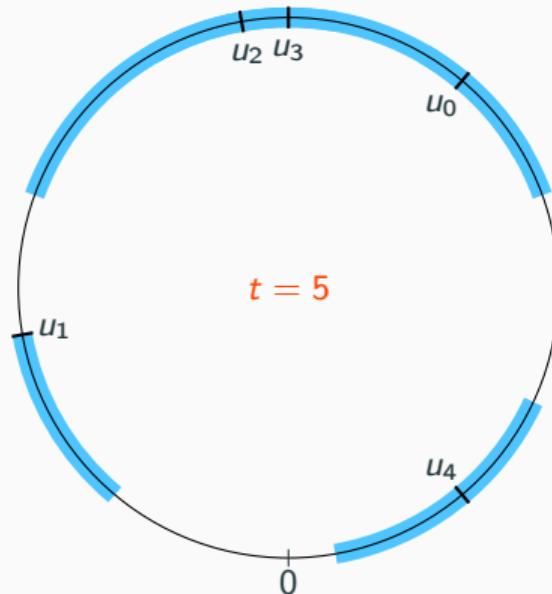


Definition of the model

State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

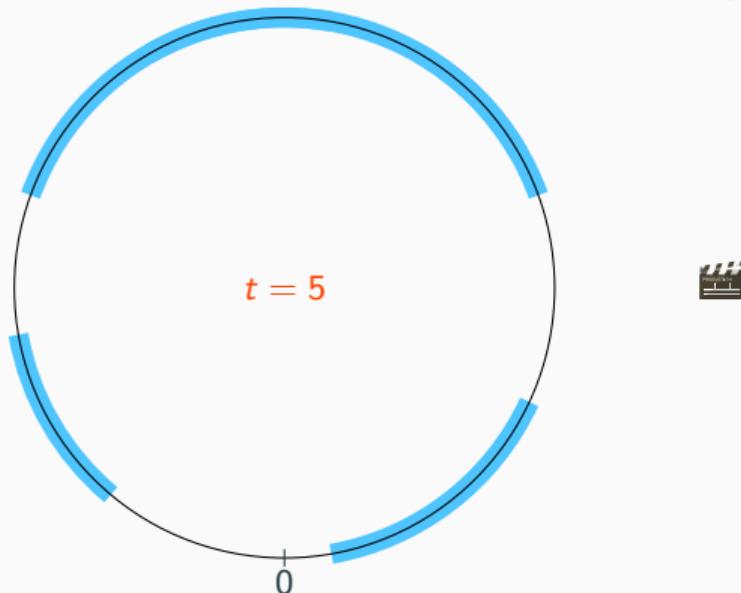


Definition of the model

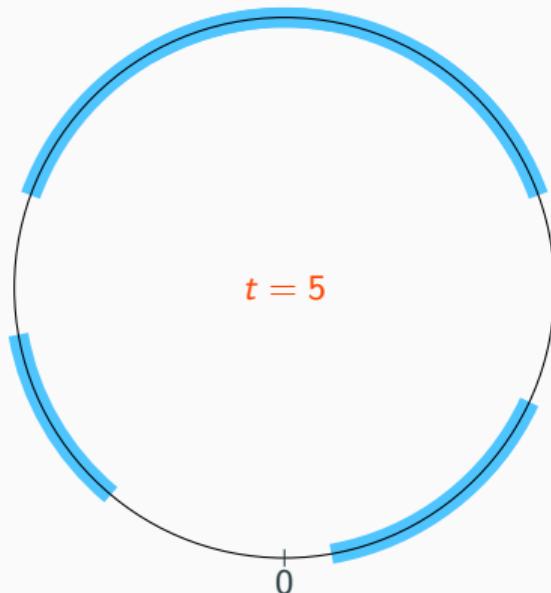
State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)



Definition of the model



State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

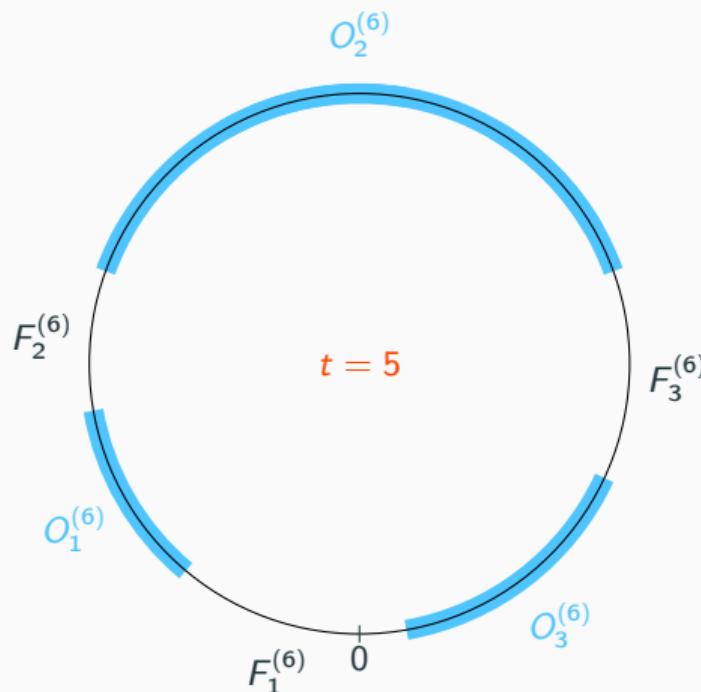
At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop $k-1$ has been spread):

- **occupied space** $O^{(k)}$ of size $\text{Leb}(O^{(k)}) = \sum_{i=0}^{k-1} m_i$
- **free space** $F^{(k)} = \mathcal{C} \setminus O^{(k)}$

Definition of the model



State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

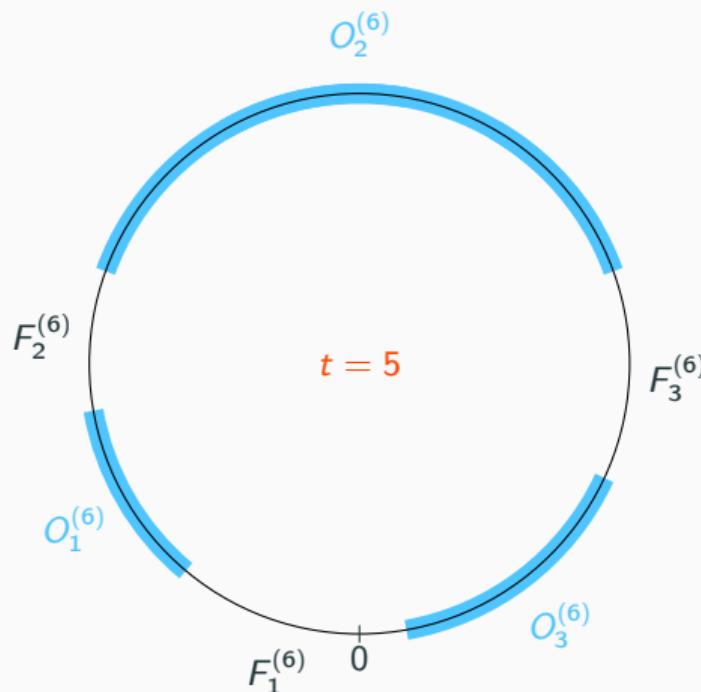
At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop $k-1$ has been spread):

- occupied space** $O^{(k)}$ of size $\text{Leb}(O^{(k)}) = \sum_{i=0}^{k-1} m_i$
- free space** $F^{(k)} = \mathcal{C} \setminus O^{(k)}$
- more precisely, $N^{(k)}$ **blocks** of each type
 $\implies (O_i^{(k)}, F_i^{(k)})_{1 \leq i \leq N^{(k)}}$ ordered around the circle with
 $0 \in O_1^{(k)} \cup F_1^{(k)}$

Definition of the model



State space $\mathcal{C} = \mathbb{R}/\mathbb{Z}$. m_0, \dots, m_n with $\sum m_i < 1$.

At every step k :

- arrival of a drop of mass m_k at $u_k \sim \mathcal{U}(\mathcal{C})$
- continuous spreading of the drop (so that the new covered area has size m_k)

Configuration at time k (i.e. after drop $k-1$ has been spread):

- occupied space $O^{(k)}$ of size $\text{Leb}(O^{(k)}) = \sum_{i=0}^{k-1} m_i$
- free space $F^{(k)} = \mathcal{C} \setminus O^{(k)}$
- more precisely, $N^{(k)}$ blocks of each type

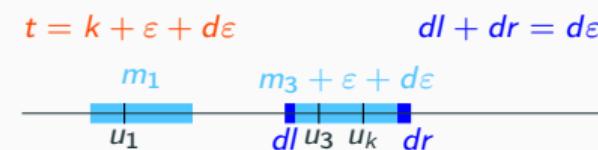
$\implies (O_i^{(k)}, F_i^{(k)})_{1 \leq i \leq N^{(k)}}$ ordered around the circle with $0 \in O_1^{(k)} \cup F_1^{(k)}$

What is a valid spreading policy ?

Continuous diffusion:

$$t = k + \varepsilon$$

$$t = k + \varepsilon + d\varepsilon$$



What is a valid spreading policy ?

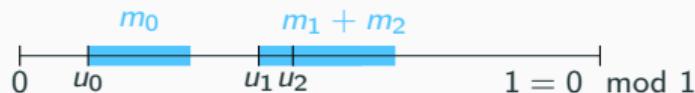
Continuous diffusion:

Validity hypotheses:

- $d\mathbf{l}$ and $d\mathbf{r}$ only depend on what is inside the current component of u_k (one of the $O_i^{(k+\varepsilon)}$)
- invariance by translation of the process

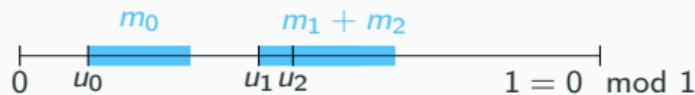
Examples of valid spreading policies

- Right diffusion at constant speed: $\overrightarrow{O^{(k)}}, \overrightarrow{F^{(k)}}$ (studied by Bertoin, Miermont [BM06])

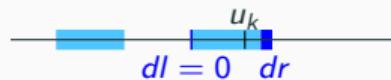


Examples of valid spreading policies

- Right diffusion at constant speed: $\overrightarrow{O^{(k)}}, \overrightarrow{F^{(k)}}$ (studied by Bertoin, Miermont [BM06])

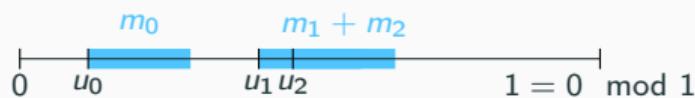


- Diffusion to the closest side of the occupied component (with or without reevaluation)

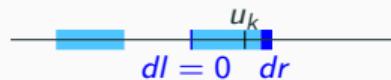


Examples of valid spreading policies

- Right diffusion at constant speed: $\overrightarrow{O^{(k)}}, \overrightarrow{F^{(k)}}$ (studied by Bertoin, Miermont [BM06])



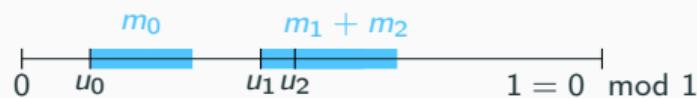
- Diffusion to the closest side of the occupied component (with or without reevaluation)



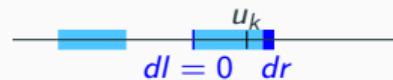
- Range of a Brownian motion
- Short-sighted jam spreader
- For any ball, pick at random some spreading policy
- ...

Examples of valid spreading policies

- Right diffusion at constant speed: $\overrightarrow{O^{(k)}}, \overrightarrow{F^{(k)}}$ (studied by Bertoin, Miermont [BM06])



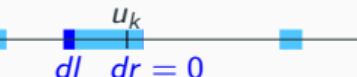
- Diffusion to the closest side of the occupied component (with or without reevaluation)



- Range of a Brownian motion
- Short-sighted jam spreader
- For any ball, pick at random some spreading policy
- ...

Example that is **not** a valid spreading policy:

- diffusion towards the closest occupied block



A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- ***Number of blocks:***
- ***Lengths of the free blocks:***
- ***Lengths of the occupied blocks:***

A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- **Lengths of the occupied blocks:** a formula for $\mathbb{P}(|O^{(k)}| = (M_0, \dots, M_{b-1}))$

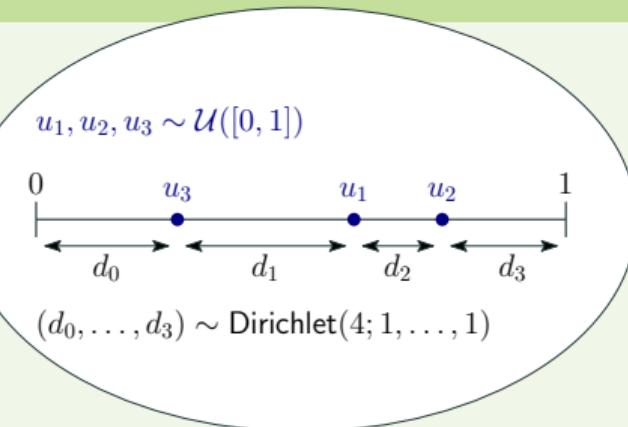
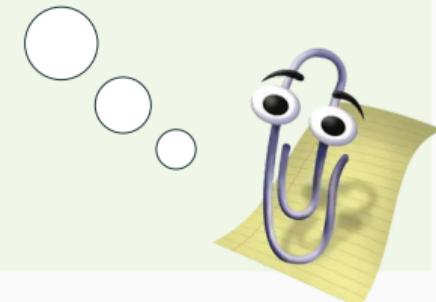
A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim D$
- **Lengths of the occupied blocks:** a formula



A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- **Lengths of the occupied blocks:** a formula for $\mathbb{P}(|O^{(k)}| = (M_0, \dots, M_{b-1}))$

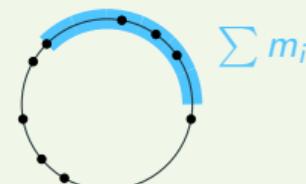
A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- **Lengths of the occupied blocks:** a formula for $\mathbb{P}(|O^{(k)}| = (M_0, \dots, M_{b-1}))$
- $\mathcal{L}(|F^{(k)}| \mid (m_0, \dots, m_{k-1})) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$



A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- **Lengths of the occupied blocks:** a formula for $\mathbb{P}(|O^{(k)}| = (M_0, \dots, M_{b-1}))$
- $\mathcal{L}(|F^{(k)}| \mid (m_0, \dots, m_{k-1})) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$

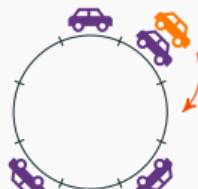
As a process in k , the following distributions are known and do **not** depend on the dispersion policy:

- $\mathcal{L}(N^{(k)}, k \geq 0)$
- $\mathcal{L}(\{\{|O^{(k)}|\}\}, k \geq 0)$

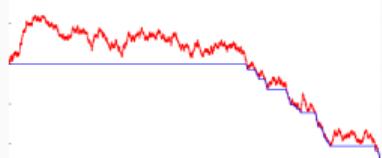
Some background on the continuous and discrete parking models

Discrete parking

- introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]



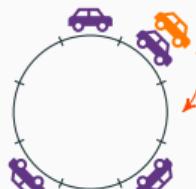
- asymptotic behavior studied by Chassaing, Louchard [CL02]



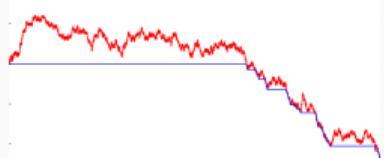
Some background on the continuous and discrete parking models

Discrete parking

- introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]

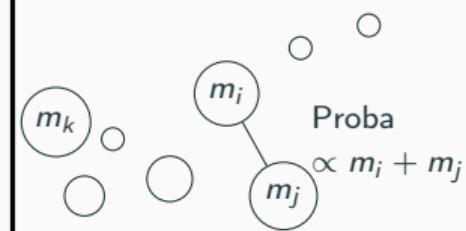


- asymptotic behavior studied by Chassaing, Louchard [CL02]



Additive coalescent

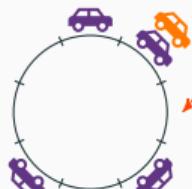
studied by Aldous, Pitman [AP98], Chassaing, Louchard,...



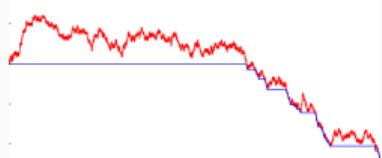
Some background on the continuous and discrete parking models

Discrete parking

- introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]



- asymptotic behavior studied by Chassaing, Louchard [CL02]

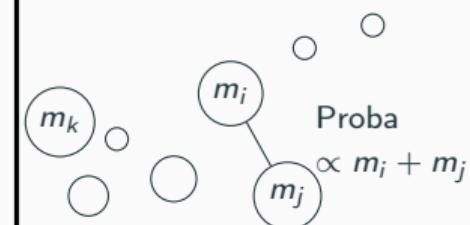


Generalized parking

- Parking on \mathbb{Z} (Przykucki, Roberts, Scott [PRS23])
- Parking on (random) trees (Contat et. al.)
- Bilateral parking procedures (Nadeau), Golf model on $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z} [Var25]**

Additive coalescent

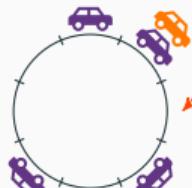
studied by Aldous, Pitman [AP98], Chassaing, Louchard,...



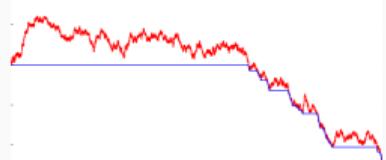
Some background on the continuous and discrete parking models

Discrete parking

- introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]



- asymptotic behavior studied by Chassaing, Louchard [CL02]

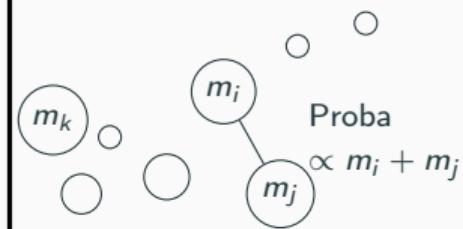


Generalized parking

- Parking on \mathbb{Z} (Przykucki, Roberts, Scott [PRS23])
- Parking on (random) trees (Contat et. al.)
- Bilateral parking procedures (Nadeau), Golf model on $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z} [Var25]**

Additive coalescent

studied by Aldous, Pitman [AP98], Chassaing, Louchard,...



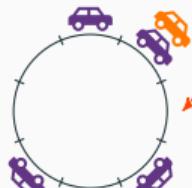
Continuous version of the classical parking

Caravans (Bertoin, Miermont [BM06])

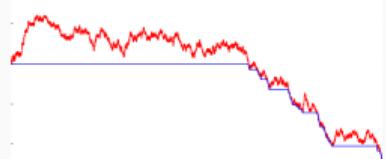
Some background on the continuous and discrete parking models

Discrete parking

- introduced by Konheim, Weiss [KW66], studied by Knuth [Knu73]



- asymptotic behavior studied by Chassaing, Louchard [CL02]

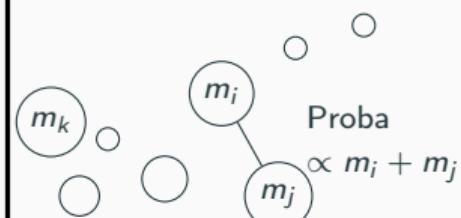


Generalized parking

- Parking on \mathbb{Z} (Przykucki, Roberts, Scott [PRS23])
- Parking on (random) trees (Contat et. al.)
- Bilateral parking procedures (Nadeau), Golf model on $\mathbb{Z}/n\mathbb{Z}$ and \mathbb{Z} [Var25]**

Additive coalescent

studied by Aldous, Pitman [AP98], Chassaing, Louchard,...



Continuous version of the classical parking
Caravans (Bertoin, Miermont [BM06])

A universality result

We fix m_0, \dots, m_{k-1} , with $\sum m_i < 1$. Let $\sigma \sim \mathcal{U}(\mathfrak{S}_{N^{(k)}})$. Let $R = 1 - \sum_{i=0}^{k-1} m_i$.

Theorem (Marckert-V. 25+)

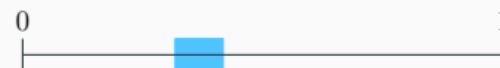
Independently of the diffusion policy,

- **Number of blocks:** $N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$
- **Lengths of the free blocks:** $\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$
- **Lengths of the occupied blocks:** a formula for $\mathbb{P}(|O^{(k)}| = (M_0, \dots, M_{b-1}))$

One great principle

Consider 4 uniform points on $[0, 1]$.

Conditional on :



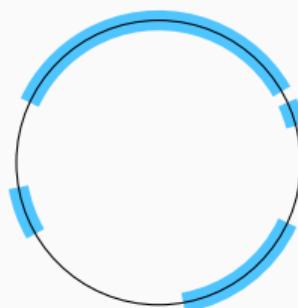
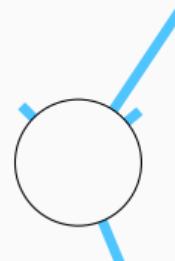
Then:

4 uniform points in

3 uniform points in

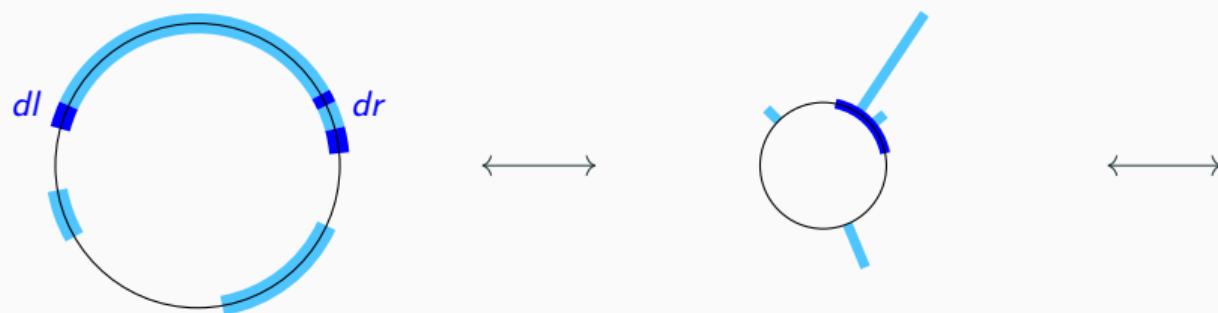
Main idea of the proof

Peak representation:



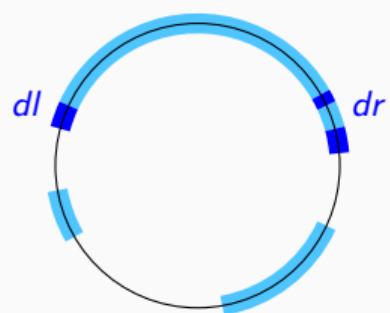
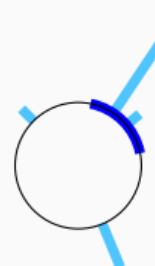
Main idea of the proof

Peak representation:



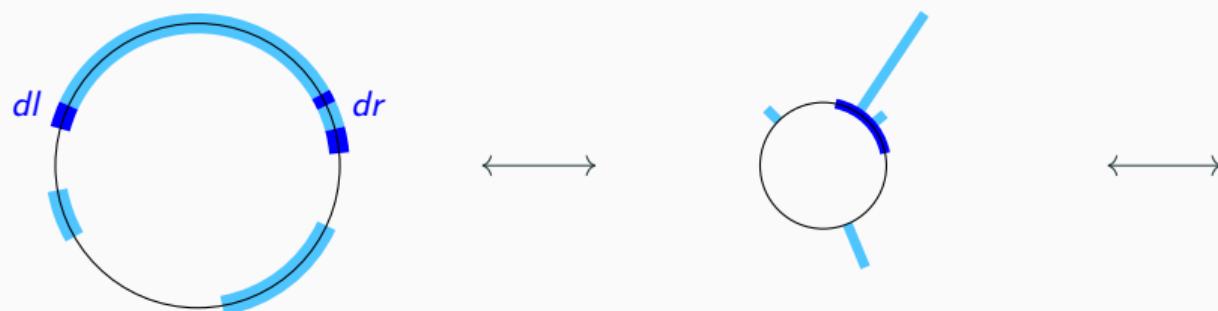
Main idea of the proof

Peak representation:



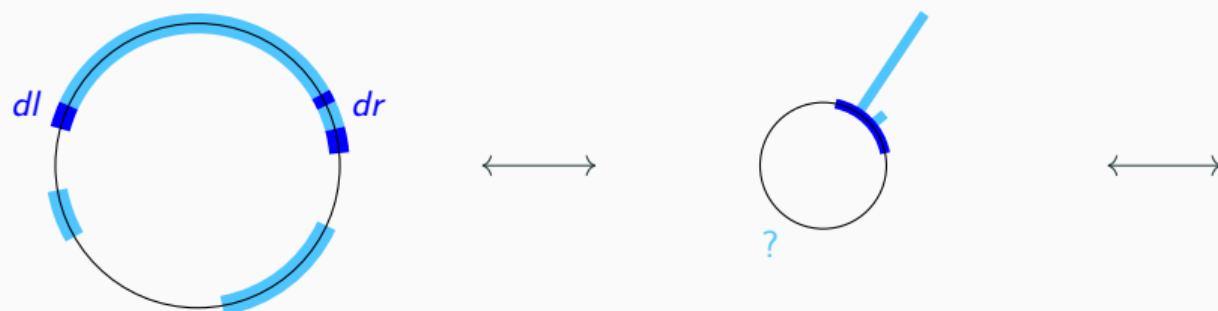
Main idea of the proof

Peak representation:



Main idea of the proof

Peak representation:



Main idea of the proof

Peak representation:

Properties that are **invariant** throughout the dispersion:

- the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R = 1 - \sum m_i$
- during the dispersion, the probability that the growing peak coalesces with other peaks depends only on the size of the drop

→ the distributions of the peaks' **number, heights and positions** do not depend on the diffusion policy

Main idea of the proof

Peak representation:



Properties that are **invariant** throughout the dispersion:

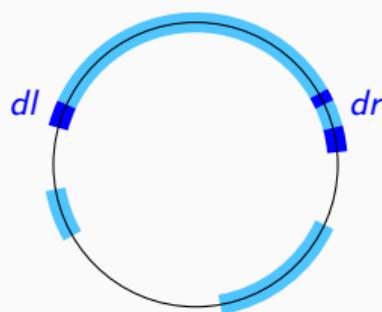
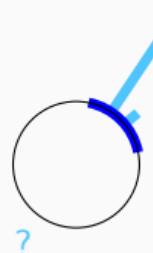
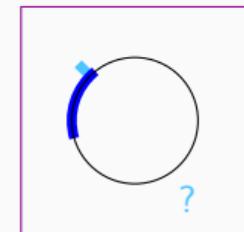
- the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R = 1 - \sum m_i$
- during the dispersion, the probability that the growing peak coalesces with other peaks depends only on the size of the drop

→ the distributions of the peaks' **number, heights and positions** do not depend on the diffusion policy

$$\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$$

Main idea of the proof

Peak representation:



$$\mathcal{L} \left(|F^{(k)}| \mid (m_0, \dots, m_{k-1}) \right) = \mathcal{L} \left(|\overrightarrow{F^{(k)}}| \mid (\sum m_i, 0, \dots, 0) \right)$$

Properties that are **invariant** throughout the dispersion:

$$\frac{\sigma \cdot |F^{(k)}|}{R} \sim \text{Dirichlet}(N^{(k)}; 1, \dots, 1)$$

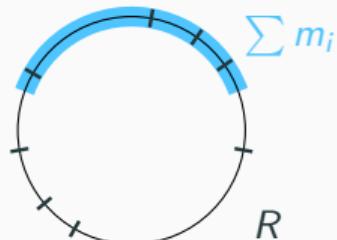
- the positions of the peaks are uniform on the smaller cycle \mathcal{C}_R of size $R = 1 - \sum m_i$
- during the dispersion, the probability that the growing peak coalesces with other peaks depends only on the size of the drop

→ the distributions of the peaks' **number, heights and positions** do not depend on the diffusion policy

→ even more surprisingly, the peaks **number and positions** do not depend on which peak is extended by the diffusion

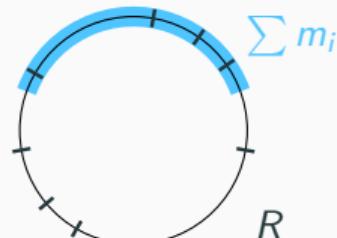
Distribution of the number of blocks $N^{(k)}$

$$\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$$



Distribution of the number of blocks $N^{(k)}$

$$\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$$



$$N^{(k)} = 1 + \sum_{j=1}^{k-1} \mathbb{1}_{u_k \notin \text{■}}$$

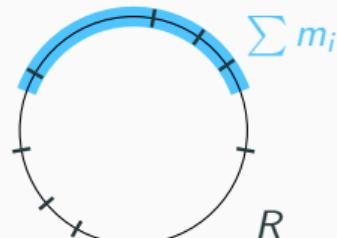
Distribution of the number of blocks $N^{(k)}$

$$\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$$

Theorem (Distribution of $N^{(k)}$)

Let $B(k-1, R) \sim \text{Binomial}(k-1, R)$, then

$$N^{(k)} \stackrel{(d)}{=} 1 + B(k-1, R)$$



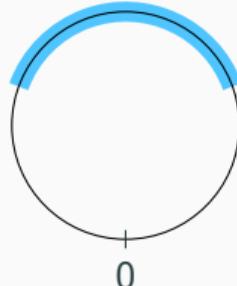
$$N^{(k)} = 1 + \sum_{j=1}^{k-1} \mathbb{1}_{u_k \notin \text{circle}}$$

Distribution of the occupied blocks

One block case:

$$\mathbb{P} \left(N^{(k)} = 1 \right) = \left(\sum m_i \right)^{k-1} =: Q \left(\sum m_i, k \right)$$

and, conditional on $N^{(k)} = 1$, $O^{(k)}$ is reduced to an interval $[A, A + \sum m_i]$
with A uniform on \mathcal{C}

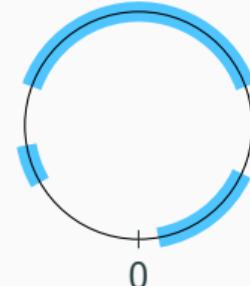


Distribution of the occupied blocks

One block case:

$$\mathbb{P}(N^{(k)} = 1) = \left(\sum m_i\right)^{k-1} =: Q\left(\sum m_i, k\right)$$

and, conditional on $N^{(k)} = 1$, $O^{(k)}$ is reduced to an interval $[A, A + \sum m_i]$ with A uniform on \mathcal{C}



General case:

Theorem

$$\mathbb{P}\left(|O^{(k)}| = (M_0, \dots, M_{b-1})\right) = T(M_0, \dots, M_{b-1}) \sum_{P \in \mathcal{P}(k, b)} \left[\prod_{\ell=0}^{b-1} Q(M_j, |P_j|) \mathbb{1}_{\sum_{i \in P_\ell} m_i = M_\ell} \right]$$

where

- $\mathcal{P}(k, b)$ is the set of partitions $P = (P_0, \dots, P_{b-1})$ of $\{1, \dots, k-1\}$ into b non empty parts,
- $T(M_0, \dots, M_{b-1}) = M_0 \frac{(1 - \sum M_\ell)^{b-1}}{(b-1)!} + \frac{(1 - \sum M_\ell)^b}{b!}$.

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$
- As a process in k :
 - $\mathcal{L}(N^{(k)}, k \geq 0)$
 - $\mathcal{L}(\{|O^{(k)}|\}, k \geq 0)$

Summary of universality results

Theorem

For any continuous model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$
- As a process in k :
 - $\mathcal{L}(N^{(k)}, k \geq 0)$
 - $\mathcal{L}(\{|O^{(k)}|\}, k \geq 0)$

Corollary: results on $O^{(k)}, F^{(k)}$ for one spreading policy are valid for any spreading policy !

Asymptotic results

With n (random) masses, $n \rightarrow \infty$, for example if

- $\forall i, m_i = 1/n$ and consider the process until time n
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and satisfy some regularity assumption), until time $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$.

Asymptotic results

With n (random) masses, $n \rightarrow \infty$, for example if

- $\forall i, m_i = 1/n$ and consider the process until time n
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and satisfy some regularity assumption), until time $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$.

Corollary (Bertoin, Miermont [BM06]; Marckert, V. 25+)

There exists a limit process S such that

$$\left(\frac{\text{LargestBlock}^{(i)}}{n}, 1 \leq i \leq j \right) \xrightarrow[n \rightarrow \infty]{(d)} (\text{SortedExc}(S)_i, 1 \leq i \leq j).$$

where $\text{LargestBlock}^{(i)} = \text{size of the } i\text{th largest } \mathbf{occupied} \text{ block}$

Asymptotic results

With n (random) masses, $n \rightarrow \infty$, for example if

- $\forall i, m_i = 1/n$ and consider the process until time n
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$ and satisfy some regularity assumption), until time $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$.

Corollary (Bertoin, Miermont [BM06]; Marckert, V. 25+)

There exists a limit process S such that

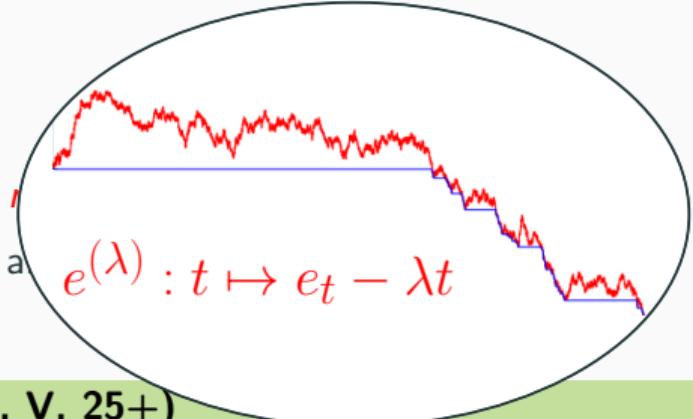
$$\left(\frac{\text{LargestBlock}^{(i)}}{n}, 1 \leq i \leq j \right) \xrightarrow[n \rightarrow \infty]{(d)} \left(\text{SortedExc}(e^{(\lambda)})_i, 1 \leq i \leq j \right).$$

where $\text{LargestBlock}^{(i)} = \text{size of the } i\text{th largest } \mathbf{occupied} \text{ block}$

Asymptotic results

With n (random) masses, $n \rightarrow \infty$, for example if

- $\forall i, m_i = 1/n$ and consider the process until time τ
- $\forall i, m_i = \ell_i/n$ (where ℓ_i are i.i.d. with $\mathbb{E}[\ell_i] < \infty$) and consider the process until time $t = \sup\{k : \sum_{i=0}^k m_i < 1\}$.

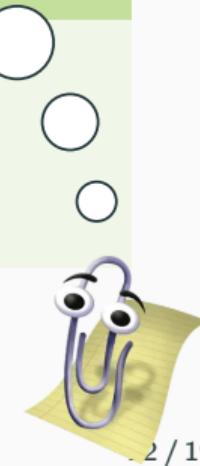


Corollary (Bertoin, Miermont [BM06]; Marckert, V. 25+)

There exists a limit process S such that

$$\left(\frac{\text{LargestBlock}^{(i)}}{n}, 1 \leq i \leq j \right) \xrightarrow[n \rightarrow \infty]{(d)} \left(\text{SortedExc}(e^{(\lambda)})_i, 1 \leq i \leq j \right).$$

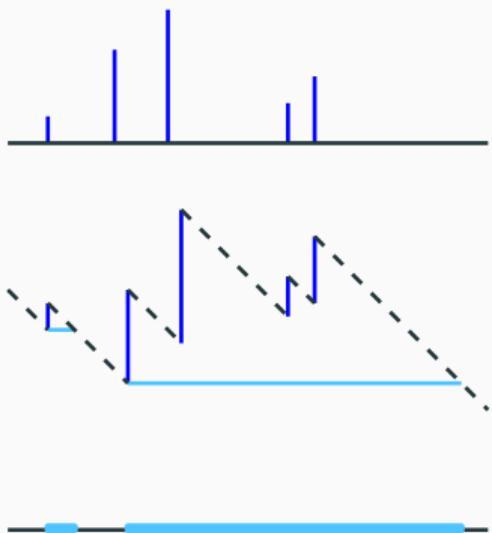
where $\text{LargestBlock}^{(i)} = \text{size of the } i\text{th largest occupied block}$



Key tool to encode the initial configuration: the “collecting path”

Illustration:

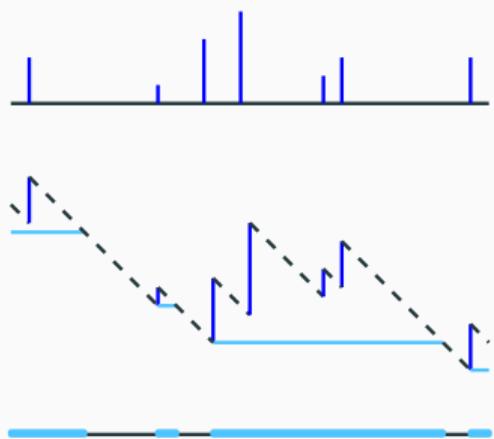
Definition: $S_x = -x + \sum_{j=0}^{\lfloor n - \lambda \sqrt{n} \rfloor} m_j \mathbb{1}_{u_j \leq x}, \forall x \in [0, 1]$



Key tool to encode the initial configuration: the “collecting path”

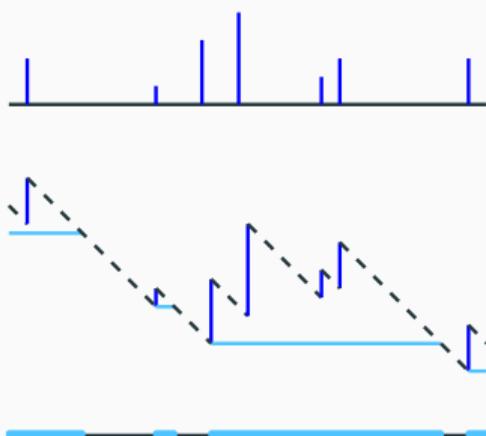
Illustration:

Definition: $S_x = -x + \sum_{j=0}^{\lfloor n - \lambda \sqrt{n} \rfloor} m_j \mathbb{1}_{u_j \leq x}, \forall x \in [0, 1]$



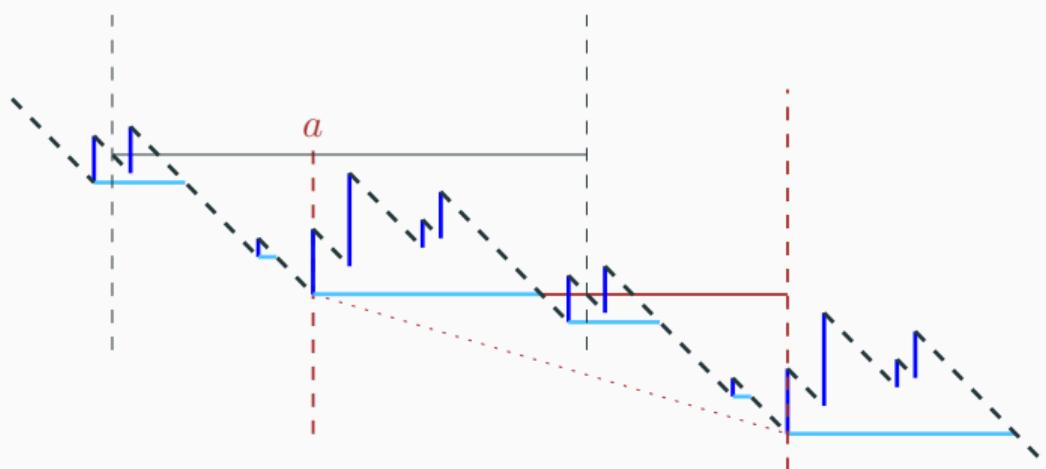
Key tool to encode the initial configuration: the “collecting path”

Illustration:



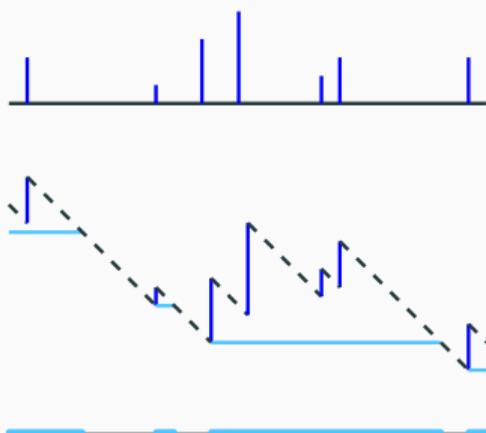
Definition: $S_x = -x + \sum_{j=0}^{\lfloor n - \lambda \sqrt{n} \rfloor} m_j \mathbb{1}_{u_j \leq x}, \forall x \in [0, 1]$

Periodic extension \bar{S} :



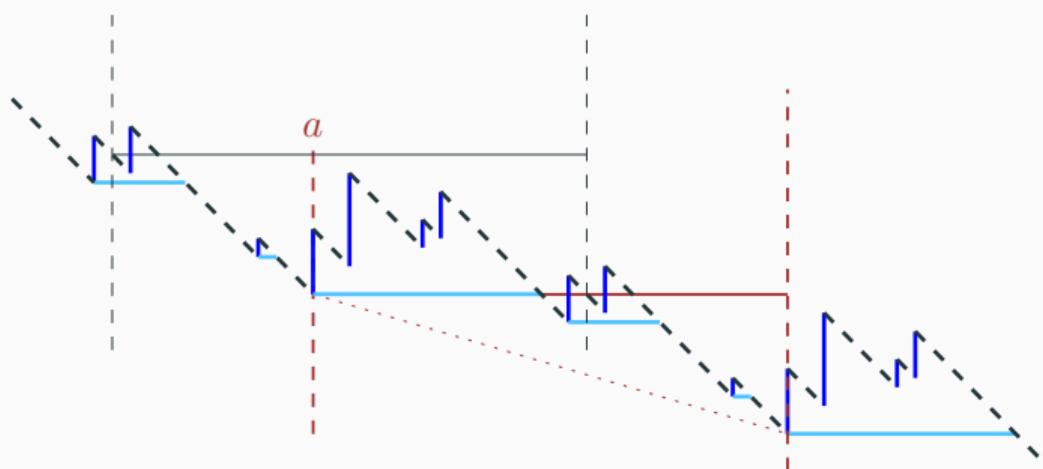
Key tool to encode the initial configuration: the “collecting path”

Illustration:



Definition: $S_x = -x + \sum_{j=0}^{\lfloor n-\lambda\sqrt{n} \rfloor} m_j \mathbb{1}_{u_j \leq x}$, $\forall x \in [0, 1]$

Periodic extension \bar{S} :

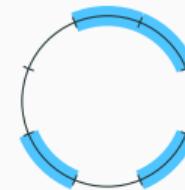


Convergence: $\bar{S}_{[a,a+1]}$ converges (in distribution) to $e^{(\lambda)}$, and $(\text{SortedExc}(\bar{S}_{[a,a+1]}))_{1 \leq i \leq j} \xrightarrow[n \rightarrow \infty]{(d)} (\text{SortedExc}(e^{(\lambda)}))_{1 \leq i \leq j}$.

Discrete space and discrete masses

New definition on $\mathcal{C}_n := \{0/n, \dots, (n-1)/n\} \subset \mathcal{C}$:

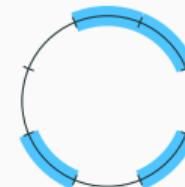
- masses arrive on \mathcal{C}_n : $\forall i, u_i \sim \mathcal{U}(\mathcal{C}_n)$
- they cover intervals with extremities in \mathcal{C}_n
- their spreading policy is only invariant by $1/n$ rotation



Discrete space and discrete masses

New definition on $\mathcal{C}_n := \{0/n, \dots, (n-1)/n\} \subset \mathcal{C}$:

- masses arrive on \mathcal{C}_n : $\forall i, u_i \sim \mathcal{U}(\mathcal{C}_n)$
- they cover intervals with extremities in \mathcal{C}_n
- their spreading policy is only invariant by $1/n$ rotation



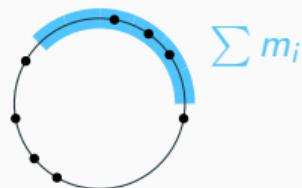
Theorem (Similar universality result)

For any *discrete* model with valid spreading policy, the following distributions are **explicit** and **independent of the spreading policy**:

- With k fixed:
 - $\mathcal{L}(O^{(k)}, F^{(k)})$
 - $\mathcal{L}\left(|F^{(k)}| \mid (m_0, \dots, m_{k-1})\right) = \mathcal{L}\left(\overrightarrow{|F^{(k)}|} \mid (\sum m_i, 0, \dots, 0)\right)$
- As a process in k :
 - $\mathcal{L}(N^{(k)}, k \geq 0)$
 - $\mathcal{L}(\{|O^{(k)}|\}, k \geq 0)$

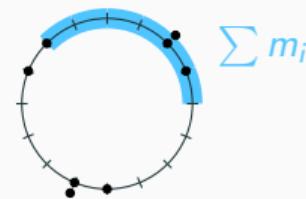
Discrete VS Continuous model

Continuous process:



$$N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$$

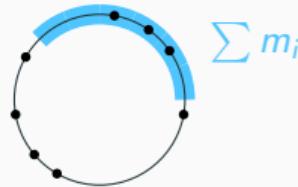
Discrete process:



$$N^{(k,n)} \stackrel{(d)}{=} 1 + \dots$$

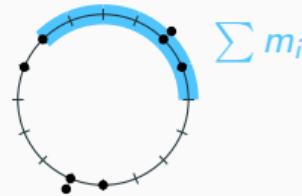
Discrete VS Continuous model

Continuous process:



$$N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R)$$

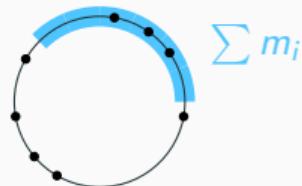
Discrete process:



$$N^{(k,n)} \stackrel{(d)}{=} 1 + \text{Binomial}(k-1, R-1/n)$$

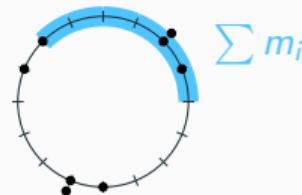
Discrete VS Continuous model

Continuous process:



$$N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k - 1, R)$$

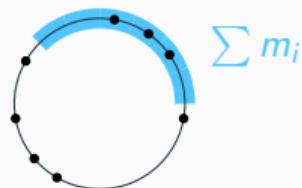
Discrete process:



$$N^{(k,n)} \stackrel{(d)}{=} 1 + \text{NbDiff}(\text{Binomial}(k - 1, R - 1/n))$$

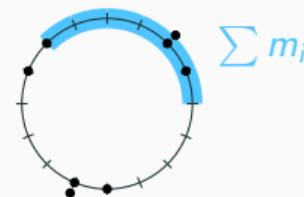
Discrete VS Continuous model

Continuous process:



$$N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k - 1, R)$$

Discrete process:



$$N^{(k,n)} \stackrel{(d)}{=} 1 + \text{NbDiff}(\text{Binomial}(k - 1, R - 1/n))$$

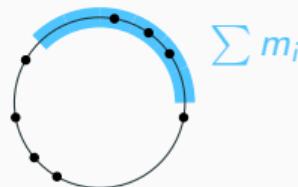
Asymptotic behavior when $k = n - \lambda\sqrt{n}$ and $\forall i, m_i = 1/n$

Number of blocks: $\frac{N^{(k)}}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \lambda$

Number of blocks: $\frac{N^{(k,n)}}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \lambda(1 - e^{-1})$

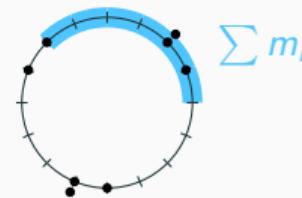
Discrete VS Continuous model

Continuous process:



$$N^{(k)} \stackrel{(d)}{=} 1 + \text{Binomial}(k - 1, R)$$

Discrete process:



$$N^{(k,n)} \stackrel{(d)}{=} 1 + \text{NbDiff}(\text{Binomial}(k - 1, R - 1/n))$$

Asymtotic behavior when $k = n - \lambda\sqrt{n}$ and $\forall i, m_i = 1/n$

Number of blocks: $\frac{N^{(k)}}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \lambda$

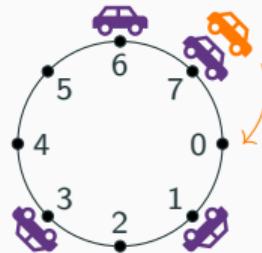
Number of blocks: $\frac{N^{(k,n)}}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \lambda(1 - e^{-1})$

Large block sizes [BM06, CL02]: $\left(\frac{\text{LargestBlock}^{(i)}}{n}, 1 \leq i \leq j \right) \xrightarrow[n \rightarrow \infty]{(d)} (\text{SortedExc}(e^{(\lambda)})_i, 1 \leq i \leq j)$

Construction cost of discrete models

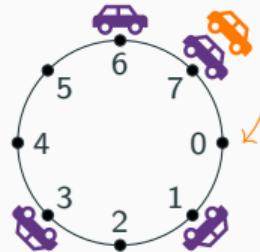
The parking model

The parking model:



The parking model

The parking model:

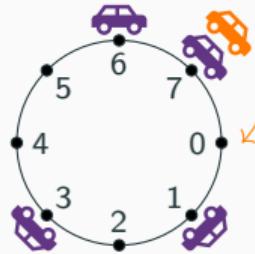


Free vertices: $N_F = n - \# \text{cars}$

LargestBlock⁽ⁱ⁾ = size of the i th largest block of occupied vertices.

The parking model

The parking model:



Free vertices: $N_F = n - \# \text{cars}$
LargestBlock⁽ⁱ⁾ = size of the i th largest block of occupied vertices.

Theorem [Pittel 87, Chassaing-Louchard 02]

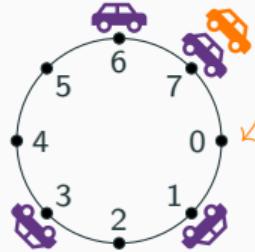
- If $N_F = N_F(n) \sim an$, $a > 0$, then LargestBlock⁽¹⁾ converges in probability:

$$\text{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{a - 1 - \log a} + O(1).$$

- If $N_F \ll \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
- If $N_F \gg \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
- Description of the **phase transition**: si $N_F/\sqrt{n} \rightarrow \lambda \geq 0$,
 $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \geq 1 \right) \xrightarrow{(d)} \left(\text{SortedExc}(e^{(\lambda)}), i \geq 1 \right)$.

The parking model

The parking model:



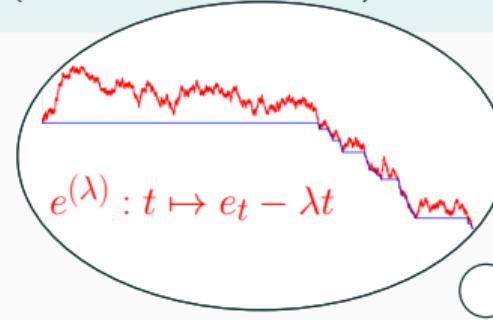
Free vertices: $N_F = n - \# \text{cars}$
LargestBlock⁽ⁱ⁾ = size of the i th largest block of occupied vertices.

Theorem [Pittel 87, Chassaing-Louchard 02]

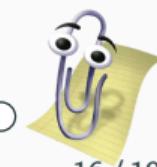
- If $N_F = N_F(n) \sim an$, $a > 0$, then LargestBlock⁽¹⁾ converges in probability:

$$\text{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{a - 1 - \log a} + O(1).$$

- If $N_F \ll \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
- If $N_F \gg \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
- Description of the **phase transition**: si $N_F/\sqrt{n} \rightarrow \lambda \geq 0$,
 $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \geq 1 \right) \xrightarrow{(d)} \left(\text{SortedExc}(e^{(\lambda)}), i \geq 1 \right)$.

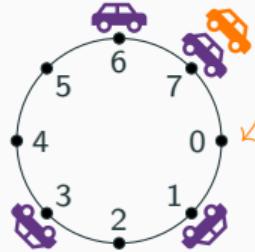


$$e^{(\lambda)} : t \mapsto e_t - \lambda t$$



The parking model

The parking model:



Free vertices: $N_F = n - \# \text{cars}$

$\text{LargestBlock}^{(i)}$ = size of the i th largest block of occupied vertices.

Generalised parking model:

local and invariant under
rotation parking policy
(Nadeau 23)

Theorem [Pittel 87, Chassaing-Louchard 02]

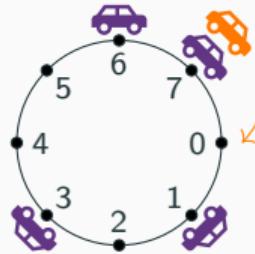
- If $N_F = N_F(n) \sim an$, $a > 0$, then $\text{LargestBlock}^{(1)}$ converges in probability:

$$\text{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{a - 1 - \log a} + O(1).$$

- If $N_F \ll \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
- If $N_F \gg \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
- Description of the **phase transition**: si $N_F/\sqrt{n} \rightarrow \lambda \geq 0$,
 $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \geq 1 \right) \xrightarrow{(d)} \left(\text{SortedExc}(e^{(\lambda)}), i \geq 1 \right)$.

The parking model

The parking model:



Free vertices: $N_F = n - \# \text{cars}$

$\text{LargestBlock}^{(i)}$ = size of the i th largest block of occupied vertices.

Generalised parking model:

local and invariant under
rotation parking policy
(Nadeau 23)

Theorem [Pittel 87, Chassaing-Louchard 02]

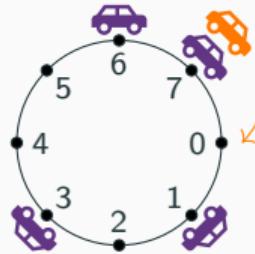
- If $N_F = N_F(n) \sim an$, $a > 0$, then $\text{LargestBlock}^{(1)}$ converges in probability:
$$\text{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{a - 1 - \log a} + O(1).$$
- If $N_F \ll \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
- If $N_F \gg \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
- Description of the **phase transition**: si $N_F/\sqrt{n} \rightarrow \lambda \geq 0$,
 $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \geq 1 \right) \xrightarrow{(d)} \left(\text{SortedExc}(e^{(\lambda)}), i \geq 1 \right)$.

Theorem (V. 25 - Universality of the distribution of the set of free vertices H^F for the generalised parking)

$$\mathbb{P} \left(H^F = X \right) = \frac{1}{n^{n-N_F}} \binom{n - N_F}{\ell_1, \dots, \ell_{N_F}} \prod_{i=1}^{N_F} (\ell_i + 1)^{\ell_i - 1}$$

The parking model

The parking model:



Free vertices: $N_F = n - \# \text{cars}$

LargestBlock⁽ⁱ⁾ = size of the i th largest block of occupied vertices.

Generalised parking model:

local and invariant under
rotation parking policy
(Nadeau 23)

Theorem [Pittel 87, Chassaing-Louchard 02, V. 25 (generalised parking)]

- If $N_F = N_F(n) \sim an$, $a > 0$, then LargestBlock⁽¹⁾ converges in probability:
$$\text{LargestBlock}^{(1)} = \frac{\log n - 3/2 \log \log n}{a - 1 - \log a} + O(1).$$
- If $N_F \ll \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 1$.
- If $N_F \gg \sqrt{n}$, then $\frac{\text{LargestBlock}^{(1)}}{n} \xrightarrow{\mathbb{P}} 0$.
- Description of the **phase transition**: si $N_F/\sqrt{n} \rightarrow \lambda \geq 0$,
 $\left(\frac{\text{LargestBlock}^{(i)}}{n}, i \geq 1 \right) \xrightarrow{(d)} \left(\text{SortedExc}(e^{(\lambda)}), i \geq 1 \right)$.

Theorem (V. 25 - Universality of the distribution of the set of free vertices H^F for the generalised parking)

$$\mathbb{P} \left(H^F = X \right) = \frac{1}{n^{n-N_F}} \binom{n - N_F}{\ell_1, \dots, \ell_{N_F}} \prod_{i=1}^{N_F} (\ell_i + 1)^{\ell_i - 1}$$

Construction cost of the parking

Definition of the cost

$$\text{GlobalCost}_n(r) = \sum_{i=1}^r \text{Cost}_{B_i}^i$$

where

- B_i is the size of the block in which the i th car falls
- $\text{Cost}_{B_i}^i$ is a random variable whose distribution depends only on B_i

For the parking:

$$\text{Cost}_\ell \sim \text{Unif} ([1, \ell])$$

Construction cost of the parking

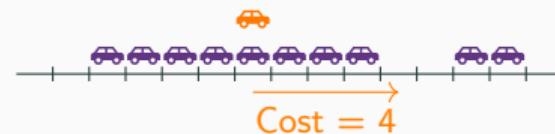
Definition of the cost

$$\text{GlobalCost}_n(r) = \sum_{i=1}^r \text{Cost}_{B_i}^i$$

where

- B_i is the size of the block in which the i th car falls
- $\text{Cost}_{B_i}^i$ is a random variable whose distribution depends only on B_i

For the parking:



$$\text{Cost}_\ell \sim \text{Unif} ([1, \ell])$$

Construction cost of the parking

If $r = n$, (Flajolet-Poblete-Viola 98)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e_t dt$$

Illustration de $\int_0^1 e_t dt$:



Construction cost of the parking

Definition of the cost

$$\text{GlobalCost}_n(r) = \sum_{i=1}^r \text{Cost}_{B_i}^i$$

where

- B_i is the size of the block in which the i th car falls
- $\text{Cost}_{B_i}^i$ is a random variable whose distribution depends only on B_i

For the parking:

$$\text{Cost}_\ell \sim \text{Unif}(\llbracket 1, \ell \rrbracket)$$

Construction cost of the parking

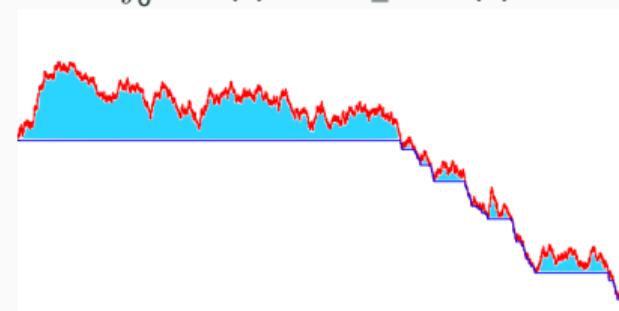
If $r = n$, (Flajolet-Poblete-Viola 98)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e_t dt$$

If $r = \lfloor n - \lambda\sqrt{n} \rfloor$, (Chassaing-Louchard 02)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e^{(\lambda)}(t) - \inf_{s \leq t} e^{(\lambda)}(s) dt =: F(\lambda)$$

Illustration de $\int_0^1 e^{(\lambda)}(t) - \inf_{s \leq t} e^{(\lambda)}(s) dt$:



Construction cost of the parking

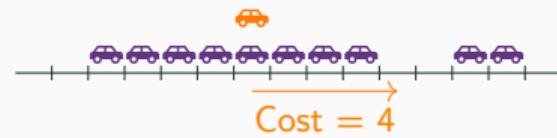
Definition of the cost

$$\text{GlobalCost}_n(r) = \sum_{i=1}^r \text{Cost}_{B_i}^i$$

where

- B_i is the size of the block in which the i th car falls
- $\text{Cost}_{B_i}^i$ is a random variable whose distribution depends only on B_i

For the parking:



$$\text{Cost}_\ell \sim \text{Unif} ([1, \ell])$$

Construction cost of the parking

If $r = n$, (Flajolet-Poblete-Viola 98)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e_t dt$$

If $r = \lfloor n - \lambda\sqrt{n} \rfloor$, (Chassaing-Louchard 02)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e^{(\lambda)}(t) - \inf_{s \leq t} e^{(\lambda)}(s) dt =: F(\lambda)$$

Theorem (Generalised parking - Marckert-V.25+)

Convergence in distribution of

$$\frac{\text{GlobalCost}_n (\lfloor n - \lambda\sqrt{n} \rfloor)}{\sqrt{n}\alpha_n}$$

towards an explicit limit; under some hypotheses on $\mathbb{E}[\text{Cost}_k]$ and $\text{Var}(\text{Cost}_k)$

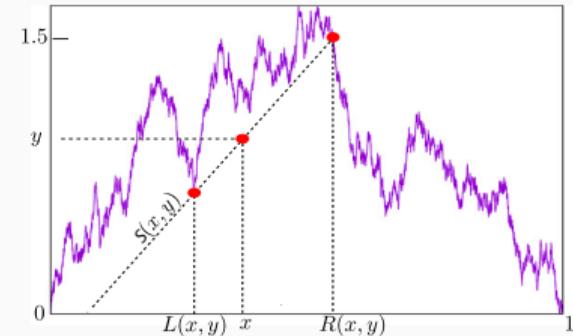
Construction cost of the parking

Definition of the cost

$$\text{GlobalCost}_n(r) = \sum_{i=1}^r \text{Cost}_{B_i}^i$$

where

- B_i is the size of the block in which the i th car falls
- $\text{Cost}_{B_i}^i$ is a random variable whose distribution depends only on B_i



Construction cost of the parking

If $r = n$, (Flajolet-Poblete-Viola 98)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e_t dt$$

If $r = \lfloor n - \lambda\sqrt{n} \rfloor$, (Chassaing-Louchard 02)

$$\frac{\text{GlobalCost}_n(r)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \int_0^1 e^{(\lambda)}(t) - \inf_{s \leq t} e^{(\lambda)}(s) dt =: F(\lambda)$$

When cars do random walks of parameter p

If $p \neq 1/2$,

$$\frac{\text{GlobalCost}_n(\lfloor n - \lambda\sqrt{n} \rfloor)}{n^{3/2}} \xrightarrow[n \rightarrow \infty]{(d)} \frac{1}{|2p - 1|} F(\lambda)$$

If $p = 1/2$,

$$\frac{\text{GlobalCost}_n(\lfloor n - \lambda\sqrt{n} \rfloor)}{n^{5/2}} \xrightarrow[n \rightarrow \infty]{(d)} \frac{1}{3} G(\lambda)$$

where $G(\lambda) = \int_0^1 \int_0^{e_x} (R(x, y) - L(x, y)) \mathbb{1}_{S(x,y) \geq \lambda} dy dx$

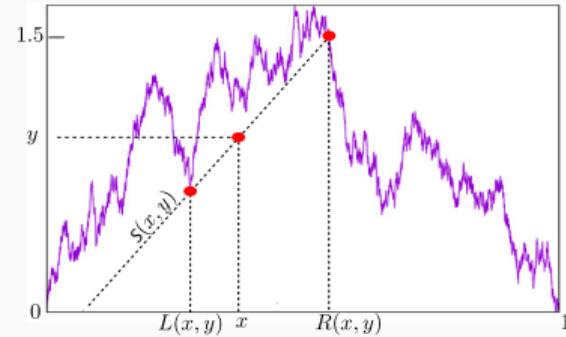
Partial idea of the proof

- Measure encoding the size of the blocks :

$$M^{(n,\lambda)} = \frac{1}{\sqrt{n}} \sum_{k \leq n - \lambda\sqrt{n}} \delta_{B_k/n}$$

$$M^{(n,\lambda)} \xrightarrow{(d)} M_\lambda$$

(for the vague topology on the set of Borelian measures on $(0, 1)$)



- If f is such that $\mathbb{E} [\text{Cost}_k] \underset{k \rightarrow \infty}{\sim} f(k)$, then

$$\frac{\text{GlobalCost}_n (\lfloor n - \lambda\sqrt{n} \rfloor)}{\sqrt{n}\alpha_n} \sim \frac{1}{\sqrt{n}\alpha_n} \sum_{k \leq n - \lambda\sqrt{n}} f(B_k) = \langle f, M^{(n,\lambda)} \rangle \xrightarrow[n \rightarrow \infty]{(d)} \langle f, M_\lambda \rangle$$

where $\langle f, M_\lambda(e) \rangle = \int_0^1 \int_0^{e_x} \frac{2}{R(x,y) - L(x,y)} f(R(x,y) - L(x,y)) \mathbb{1}_{S(x,y) \geq \lambda} dy dx$.

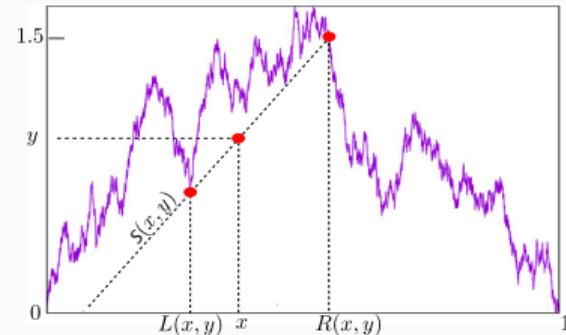
Partial idea of the proof

- Measure encoding the size of the blocks :

$$M^{(n,\lambda)} = \frac{1}{\sqrt{n}} \sum_{k \leq n - \lambda\sqrt{n}} \delta_{B_k/n}$$

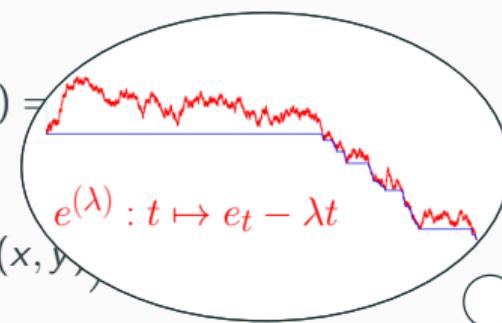
$$M^{(n,\lambda)} \xrightarrow{(d)} M_\lambda$$

(for the vague topology on the set of Borelian measures on $(0, 1)$)

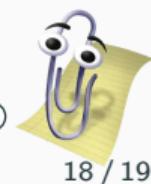


- If f is such that $\mathbb{E} [\text{Cost}_k] \underset{k \rightarrow \infty}{\sim} f(k)$, then

$$\frac{\text{GlobalCost}_n (\lfloor n - \lambda\sqrt{n} \rfloor)}{\sqrt{n}\alpha_n} \sim \frac{1}{\sqrt{n}\alpha_n} \sum_{k \leq n - \lambda\sqrt{n}} f(B_k)$$



$$\text{where } \langle f, M_\lambda(e) \rangle = \int_0^1 \int_0^{e_x} \frac{2}{R(x,y) - L(x,y)} f(R(x,y) - L(x,y))$$



💧 Thank you ! 💧

References