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Definition of the model

0

State space C = R/Z. m0, · · · ,mn with
∑

mi < 1.

At every step k:

• arrival of a drop of mass mk at uk ∼ U(C)

•
::::::::
continuous

::::::::
spreading of the drop (so that the new

covered area has size mk)

Configuration at time k (i.e. after drop k − 1 has been spread):

• occupied space O(k) of size Leb
(
O(k)

)
=
∑k−1

i=0 mi

• free space F (k) = C\O(k)

• more precisely, N(k) blocks of each type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) ordered around the circle with

0 ∈ O
(k)
1 ∪ F

(k)
1
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What is a valid spreading policy ?

Continuous diffusion:

u1 uku3

m3 + εm1

t = k + ε

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

Validity hypotheses:

• dl and dr only depend on what is inside the current component of uk (one of the O
(k+ε)
i )

• invariance by translation of the process

2 / 19
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Examples of valid spreading policies

• Right diffusion at constant speed:
−−→
O(k),

−−→
F (k) (studied by Bertoin, Miermont [BM06])

0 1 = 0 mod 1u0 u2u1

m1 +m2m0

• Diffusion to the closest side of the occupied component (with or without reevaluation)
uk

dl = 0 dr

• Range of a Brownian motion
• Short-sighted jam spreader
• For any ball, pick at random some spreading policy
• ...

Example that is not a valid spreading policy:
• diffusion towards the closest occupied block uk

dl dr = 0
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A universality result

We fix m0, . . . ,mk−1, with
∑

mi < 1. Let σ ∼ U(SN(k)). Let R = 1 −
∑k−1

i=0 mi .

Theorem (Marckert-V. 25+)
Independently of the diffusion policy,

• Number of blocks:

N(k) (d)
= 1 + Binomial(k − 1,R)

• Lengths of the free blocks:

σ.|F (k)|
R ∼ Dirichlet(N(k); 1, . . . , 1)

• Lengths of the occupied blocks:

a formula for P
(
|O(k)| = (M0, . . . ,Mb−1)

)
• L

(
|F (k)|

∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

As a process in k, the following distributions are known and do not depend on the dispersion
policy:

• L(N(k), k ≥ 0)

• L({{|O(k)|}}, k ≥ 0)
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Some background on the continuous and discrete parking models

Discrete parking

• introduced by Konheim, Weiss
[KW66], studied by Knuth [Knu73]

• asymptotic behavior studied by
Chassaing, Louchard [CL02]

Generalized parking

• Parking on Z (Przykucki, Roberts, Scott
[PRS23])

• Parking on (random) trees (Contat et. al.)

• Bilateral parking procedures (Nadeau),
Golf model on Z/nZ and Z [Var25]

Continuous version of the classical parking
Caravans (Bertoin, Miermont [BM06])

Additive coalescent
studied by Aldous, Pitman
[AP98], Chassaing,
Louchard,...

mi

mj

mk Proba
∝ mi +mj
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A universality result

We fix m0, . . . ,mk−1, with
∑

mi < 1. Let σ ∼ U(SN(k)). Let R = 1 −
∑k−1

i=0 mi .

Theorem (Marckert-V. 25+)
Independently of the diffusion policy,

• Number of blocks: N(k) (d)
= 1 + Binomial(k − 1,R)

• Lengths of the free blocks: σ.|F (k)|
R ∼ Dirichlet(N(k); 1, . . . , 1)

• Lengths of the occupied blocks: a formula for P
(
|O(k)| = (M0, . . . ,Mb−1)

)

6 / 19



One great principle

Consider 4 uniform points on [0, 1].

Conditional on :

Then:

0 1

0 1

4 uniform points in

0 1

0 1

3 uniform points in

7 / 19



Main idea of the proof

Peak representation:

dl dr

?

Properties that are invariant throughout the dispersion:

• the positions of the peaks are uniform on the smaller cycle CR of size R = 1 −
∑

mi

• during the dispersion, the probability that the growing peak coalesces with other peaks depends
only on the size of the drop

→ the distributions of the peaks’ number, heights and positions do not depend on the diffusion policy

σ.|F (k)|
R

∼ Dirichlet(N(k); 1, . . . , 1)

→ even more surprisingly, the peaks number and positions do not depend on which peak is extended
by the diffusion
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Main idea of the proof

Peak representation:

dl dr

? ?

L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)

= L
(
|
−−→
F (k)|

∣∣∣∣ (
∑

mi , 0, · · · , 0)
)

Properties that are invariant throughout the dispersion:

• the positions of the peaks are uniform on the smaller cycle CR of size R = 1 −
∑

mi

• during the dispersion, the probability that the growing peak coalesces with other peaks depends
only on the size of the drop

→ the distributions of the peaks’ number, heights and positions do not depend on the diffusion policy

σ.|F (k)|
R

∼ Dirichlet(N(k); 1, . . . , 1)

→ even more surprisingly, the peaks number and positions do not depend on which peak is extended
by the diffusion 8 / 19



Distribution of the number of blocks N (k)

L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

Theorem (Distribution of N(k))
Let B(k − 1,R) ∼ Binomial(k − 1,R), then

N(k) (d)
= 1 + B(k − 1,R)

∑
mi

R

N(k) = 1 +
k−1∑
j=1

1uk /∈
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Distribution of the occupied blocks

One block case:

P
(
N(k) = 1

)
=

(∑
mi

)k−1
=: Q

(∑
mi , k

)
and, conditional on N(k) = 1, O(k) is reduced to an interval [A,A+

∑
mi ]

with A uniform on C

General case:

0

Theorem

P
(
|O(k)| = (M0, . . . ,Mb−1)

)
= T(M0, . . . ,Mb−1)

∑
P∈P(k,b)

[
b−1∏
ℓ=0

Q(Mj , |Pj |) 1∑
i∈Pℓ

mi=Mℓ

]
where

- P(k, b) is the set of partitions P = (P0, . . . ,Pb−1) of {1, . . . , k − 1} into b non empty parts,

- T(M0, . . . ,Mb−1) = M0
(1−ΣMℓ)

b−1

(b−1)! + (1−ΣMℓ)
b

b!
.
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Summary of universality results

Theorem
For any continuous model with valid spreading policy, the following distributions are explicit
and independent of the spreading policy:

• With k fixed:
• L(O(k),F (k))

• L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

• As a process in k :
• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)

Corollary: results on O(k),F (k) for one spreading policy are valid for any spreading
policy !
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Asymptotic results

With n (random) masses, n → ∞, for example if

• ∀i ,mi = 1/n and consider the process until time n

• ∀i ,mi = ℓi/n (where ℓi are i.i.d. with E[ℓi ] < ∞ and satisfy some regularity assumption),
until time t = sup{k :

∑k
i=0 mi < 1}.

Corollary (Bertoin, Miermont [BM06]; Marckert, V. 25+)
There exists a limit process S such that(

LargestBlock(i)

n
, 1 ≤ i ≤ j

)
(d)−→

n→∞
(SortedExc()i , 1 ≤ i ≤ j) .

where LargestBlock(i) = size of the ith largest occupied block
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e(λ) : t 7→ et − λt



Key tool to encode the initial configuration: the “collecting path”

Illustration: Definition: Sx = −x +
∑⌊n−λ

√
n⌋

j=0 mj1uj≤x , ∀x ∈ [0, 1]

Periodic extension S̄ :

a

Convergence: S̄[a,a+1] converges (in distribution) to e(λ), and(
SortedExc(S̄[a,a+1])i

)
1≤i≤j

(d)−→
n→∞

(
SortedExc(e(λ))i

)
1≤i≤j

.
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Discrete space and discrete masses

New definition on Cn := {0/n, · · · , (n − 1)/n} ⊂ C :
• masses arrive on Cn : ∀i , ui ∼ U(Cn)
• they cover intervals with extremities in Cn
• their spreading policy is only invariant by 1/n rotation

Theorem (Similar universality result)
For any discrete model with valid spreading policy, the following distributions are explicit and
independent of the spreading policy:

• With k fixed:

• L(O(k),F (k))

• L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

• As a process in k:

• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)
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Discrete VS Continuous model

Continuous process:

∑
mi

N(k) (d)
= 1 + Binomial(k − 1,R)

Discrete process:

∑
mi

N(k,n) (d)
= 1 + . . .

Asymtotic behavior when k = n − λ
√
n and ∀i ,mi = 1/n

Number of blocks: N(k)
√
n

P−→
n→∞

λ Number of blocks: N(k,n)
√
n

P−→
n→∞

λ(1 − e−1)

Large block sizes [BM06, CL02]:
(

LargestBlock(i)

n , 1 ≤ i ≤ j
)

(d)−→
n→∞

(
SortedExc(e(λ))i , 1 ≤ i ≤ j

)
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Construction cost of discrete
models



The parking model

The parking model:

0

1
2

3

4

5
6

7

Free vertices: NF = n −#

LargestBlock(i) = size of the
ith largest block of occupied
vertices.
Generalised parking model:
local and invariant under
rotation parking policy
(Nadeau 23)

Theorem [Pittel 87, Chassaing-Louchard 02]

• If NF = NF (n) ∼ an, a > 0, then LargestBlock(1) converges in probability:

LargestBlock(1) =
log n − 3/2 log log n

a− 1 − log a
+ O(1).

• If NF ≪
√
n, then LargestBlock(1)

n

P→ 1.

• If NF ≫
√
n, then LargestBlock(1)

n

P→ 0.

• Description of the phase transition: si NF/
√
n → λ ≥ 0,(

LargestBlock(i)
n

, i ≥ 1
)

(d)→
(
SortedExc(e(λ)), i ≥ 1

)
.

Theorem (V. 25 - Universality of the distribution of the set of free vertices
HF for the generalised parking)

P
(
HF = X

)
=

1
nn−NF

(
n − NF

ℓ1, . . . , ℓNF

)
NF∏
i=1

(ℓi + 1)ℓi−1
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Construction cost of the parking

Definition of the cost

GlobalCostn(r) =
r∑

i=1

CostiBi

where
• Bi is the size of the block in which the ith car falls

• CostiBi
is a random variable whose distribution depends only on Bi

For the parking:

Cost = 4

Cost.ℓ ∼ Unif (J1, ℓK)

Construction cost of the parking
If r = n, (Flajolet-Poblete-Viola 98)

GlobalCostn(r)
n3/2

(d)−→
n→∞

∫ 1

0
etdt

If r = ⌊n − λ
√
n⌋, (Chassaing-Louchard 02)

GlobalCostn(r)
n3/2

(d)−→
n→∞

∫ 1

0
e(λ)(t)− inf

s≤t
e(λ)(s)dt=: F (λ)
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n3/2

(d)−→
n→∞

∫ 1

0
e(λ)(t)− inf

s≤t
e(λ)(s)dt=: F (λ)

Theorem (Generalised parking - Marckert-
V.25+)
Convergence in distribution of

GlobalCostn
(
⌊n − λ

√
n⌋
)

√
nαn

towards an explicit limit; under some hypotheses on
E [Costk ] and Var (Costk)
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Construction cost of the parking
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GlobalCostn(r)
n3/2

(d)−→
n→∞

∫ 1

0
e(λ)(t)− inf

s≤t
e(λ)(s)dt=: F (λ)

When cars do random walks of parameter p

If p ̸= 1/2,

GlobalCostn(⌊n − λ
√
n⌋)

n3/2
(d)−→

n→∞

1
|2p − 1|F (λ)

If p = 1/2,

GlobalCostn(⌊n − λ
√
n⌋)

n5/2
(d)−→

n→∞

1
3
G(λ)

where G(λ) =
∫ 1
0

∫ ex
0 (R(x , y)− L(x , y))1S(x,y)≥λdydx
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Partial idea of the proof

• Measure encoding the size of the blocks :
M(n,λ) = 1√

n

∑
k≤n−λ

√
n δBk/n

M(n,λ) (d)→ Mλ

(for the vague topology on the set of Borelian measures on (0, 1))

S

• If f is such that E [Cost.k ] ∼
k→∞

f (k), then

GlobalCostn
(
⌊n − λ

√
n⌋
)

√
nαn

∼ 1√
nαn

∑
k≤n−λ

√
n

f (Bk) = ⟨f ,M(n,λ)⟩ (d)−→
n→∞

⟨f ,Mλ⟩

where ⟨f ,Mλ(e)⟩ =
∫ 1
0

∫ ex
0

2
R(x,y)−L(x,y) f

(
R(x , y)− L(x , y)

)
1S(x,y)≥λdydx .
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e(λ) : t 7→ et − λt



Thank you !
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