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[ Classical parking
introduced by Knuth [Knu73]

e
&P

asymptotic behavior studied by
Chassaing, Louchard [CL02]

SN W o

2/12



Some background on the continuous and discrete parking models

[ Classical parking
introduced by Knuth [Knu73]

=
3
|
asymptotic behavior studied by [Additive coalescent
Chassaing, Louchard [CL02] studied by Aldous, Pitman

[AP98], Chassaing,

% Louchard, ...
o O

) g @O @ Proba
x mj + mj
0L @

\ J

2/12




Some background on the continuous and discrete parking models

[ Classical parking [ Generalized parking
introduced by Knuth [Knu73] Parking on the integers (Przykucki,

Roberts, Scott [PRS23])

e
Golf model [Var24]
f
asymptotic behavior studied by [Additive coalescent
Chassaing, Louchard [CL02] studied by Aldous, Pitman

[AP98], Chassaing,

% Louchard, ...
o O

) g @O @ Proba
x mj + mj
0L @

\ J

2/12




Some background on the continuous and discrete parking models

[ Classical parking [ Generalized parking
introduced by Knuth [Knu73] Parking on the integers (Przykucki,

Roberts, Scott [PRS23])

e ¥
Golf model [Var24]
% &
asymptotic behavior studied by [Additive coalescent
Chassaing, Louchard [CL02] studied by Aldous, Pitman

[AP98], Chassaing,

Q—MM"‘”M» Louchard, ...
o O
) ] ’ @ 5 () Proba
[Continuous version of the classical parking ] O O OC mj =+ m;

Caravans (Bertoin, Miermont [BM06]) { )
2/12




Some background on the continuous and discrete parking models

[ Classical parking [ Generalized parking
introduced by Knuth [Knu73] Parking on the integers (Przykucki,

Roberts, Scott [PRS23])

e ¥
Golf model [Var24]
% &
asymptotic behavior studied by [Additive coalescent
Chassaing, Louchard [CL02] studied by Aldous, Pitman

[AP98], Chassaing,

% Louchard, ...
O
oN
| QF b
5 o g n \ X mj i
[Contmuous version of the classical parking O O @ J

Caravans (Bertoin, Miermont [BM06]) { { )
2/12




Examples of spreading policies
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Examples of spreading policies

¥ ¥ T
uy up U;

Proportion (p,1 — p) to the right/left, with p ~ 2([0, 1])
Diffusion to the closest side (with or without constant reevaluation)
Infinitesimal particle like diffusion

for any ball, pick at random some spreading policy
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hat is a reasonable spreading ?

local and continuous diffusion

t=k+e¢ t=k+c+de dl + dr = de
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up u3 Ui uy dlus Ui dr
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hat is a reasonable spreading ?

local and continuous diffusion

t=k+e¢ t=k+e+de dl + dr = de

8
} i
up u3 Ui uy dlus Ui dr

dl and dr only depend on what is inside the current component of uy (one of the O,.(kJrE))

invariance by translation of the process
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A universality result

: B
We consider ”',L,F‘ = (‘ R">1<'<N(k)’ for any 0 € Spw and let o ~ U(Spw)-
LS

Theorem

Independently of the diffusion policy,
Number of blocks: N1 2 1 | Binomial(k — 1,1 — Y, m;)
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LS

Theorem

Independently of the diffusion policy,
Number of blocks: N+ 2 1 Binomial(k — 1,1 — Y, m;)
Lengths of the free blocks: % ~ Dirichlet(N®); 1,--- 1)
Lengths of the occupied blocks: a formula for P (o.|0®| = (M, ..., My_1))

Corollary

Asymptotic results (for independent random masses): convergence of the block lengths
process (time-changed) to an eternal additive coalescent (Bertoin, Miermont [BM06])
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of = (00 F(K) as subsets of C
of the sequence Seq(B) = (Ofk)7 F-(k))lg,-g,\,(k) since 0 € Oﬁk) U Fl(k)

1

First analysis

L (B(")) — (Rot(B("), u)) with u ~ U(C)

=L (Rot(Permut(Seq(B(k)),J,T), u)) with 0,7 € Syw and u ~ U(C)

u Rot( ., u) 0 Permut( . ,0,7) 0
/YN /YN
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Size bias and exchangeability of the blocks Il

Reminder: B = (0, F(¥))
Theorem (Exchangeability)

The distribution of B¥) is independent from the diffusion policy.

Concerning the free blocks,

£<|F(k)‘ ‘ (mi,--- ,mk_l)) —r (|F7§| ’ (tho,... ’0)>
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Intuition on exchangeability

dl dr
— «— Q
0 0
0

allow to show that, at every step:

the positions of the peaks are uniform on the smaller cycle Cg of size R=1-> m;
the distributions of the peaks number, lengths and positions do not depend on the
diffusion policy
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Distribution of the number of blocks N¥) and of the lengths of the free blocks
. o. ‘Fdi‘
Reminder: |F| = (|Fil)y<icn and 24 = (1) Q

for any o € G-

Theorem (Distribution of |F| conditional on N())
Recall that R=1— )" m;.

unbiased version: if o ~ U(Syw), # ~ Dirichlet(N®); 1, ... 1)
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Distribution of the number of blocks N¥) and of the lengths of the free blocks
. o. |Fo,]
Reminder: |F| = (|Fil)y<icn and 24 = (1) @

for any o € G-

Theorem (Distribution of |F| conditional on N())
Recall that R=1— )" m;.

unbiased version: if o ~ U(Syw), # ~ Dirichlet(N®); 1, ... 1)

biased version:

|F| Dirichlet(N(k);1,--- 1) with probability 1 — R
R Dirichlet(N():2,1,... 1) with probability R
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Distribution of the number of blocks N¥) and of the lengths of the free blocks

Reminder:

r (|F(k)| ’ (mi, -~ 7mk_1)) —r (/?(’3| ‘ > my0,--- 70))

Theorem (Distribution of N())
Ifwelet Ry =1 — Zf'(:l m; and B(k — 1, R¢) ~ Binomial(k — 1, Ry),

N D4 Bk - 1,Ry)

R
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Distribution of the occupied blocks

P (/v(k) - 1) = (Z m,-) S QD mi. k)

and, conditional on N =1, O®) is reduced to an interval [A, B]
with A uniform on C
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Distribution of the occupied blocks

P (N(k) _ 1) _ (Z m,.)H = Q> mi. k)

and, conditional on N =1, O®) is reduced to an interval [A, B]
with A uniform on C

Theorem

]P’(a'.|0(/<)‘ = (Mo, - -- 7/\4}71)) _ Z

PeP(k,b)

12[12@2 me} {H Q(A@P;—D} %

£=0 =0

where o ~ U(S ) and P(k, b) is the set of partitions P = (Po, - - - , P,—1) of the set
{1,--- ,k — 1} as a sequence of b non empty parts.
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Conclusion and perspectives

discrete space extension

analysis of the asymptotic cost of parking procedures
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