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Definition of the model

0

State space C = R/Z. m1, · · · ,mn with
∑

mi < 1.

At every step k :

• arrival of a drop of mass mk at uk ∼ U(C)

• continuous spreading of the drop (so that the new
covered area has size mk)

Configuration at time k (i.e. after drop k − 1 has been
spread):

• occupied space O(k) of size Leb
(
O(k)

)
=

∑k−1
i=1 mi

• free space F (k) = C\O(k)

• more precisely, N(k) blocks of each type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) ordered around the circle with

0 ∈ O
(k)
1 ∪ F

(k)
1
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Some background on the continuous and discrete parking models

Classical parking
• introduced by Knuth [Knu73]

• asymptotic behavior studied by
Chassaing, Louchard [CL02]

Generalized parking
• Parking on the integers (Przykucki,

Roberts, Scott [PRS23])

• Golf model [Var24]

Continuous version of the classical parking
Caravans (Bertoin, Miermont [BM06])

Additive coalescent
studied by Aldous, Pitman
[AP98], Chassaing,
Louchard,...

mi

mj

mk Proba
∝ mi +mj
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Examples of spreading policies

• Right diffusion at constant speed:
−−→
O(k),

−−→
F (k)

u1 u3u2

m2 +m3m1

• Proportion (p, 1 − p) to the right/left, with p ∼ U([0, 1])
• Diffusion to the closest side (with or without constant reevaluation)

• Infinitesimal particle like diffusion

• for any ball, pick at random some spreading policy

• ...
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What is a reasonable spreading ?

As a continuous process: local and continuous diffusion

u1 uku3

m3 + εm1

t = k + ε

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

Reasonable hypotheses:

• dl and dr only depend on what is inside the current component of uk (one of the O
(k+ε)
i )

• invariance by translation of the process
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A universality result

We consider σ.|F |
R =

(
|Fσi

|
R

)
1≤i≤N(k)

, for any σ ∈ SN(k) and let σ ∼ U(SN(k)).

Theorem
Independently of the diffusion policy,

• Number of blocks: N(k+1) (d)
= 1 + Binomial(k − 1, 1 −

∑k
i=1 mi )

• Lengths of the free blocks: σ.|F |
R ∼ Dirichlet(N(k); 1, · · · , 1)

• Lengths of the occupied blocks: a formula for P
(
σ.|O(k)| = (M0, . . . ,Mb−1)

)
Corollary
Asymptotic results (for independent random masses): convergence of the block lengths
process (time-changed) to an eternal additive coalescent (Bertoin, Miermont [BM06])
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Size bias and exchangeability of the blocks I

Invariance by rotation of B(k) = (O(k),F (k)) as subsets of C

Size bias of the sequence Seq(B(k)) = (O
(k)
i ,F

(k)
i )1≤i≤N(k) since 0 ∈ O

(k)
1 ∪ F

(k)
1

First analysis

L
(
B(k)

)
= L

(
Rot(B(k), u)

)
with u ∼ U(C)

= L
(
Rot(Permut(Seq(B(k)), σ, τ), u)

)
with σ, τ ∈ SN(k) and u ∼ U(C)

0

u Rot( . , u) 0 Permut( . , σ, τ) 0
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Size bias and exchangeability of the blocks II

Reminder: B(k) = (O(k),F (k))

Theorem (Exchangeability)

• The distribution of B(k) is independent from the diffusion policy.

• Concerning the free blocks,

L
(
|F (k)|

∣∣∣ (m1, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

7 / 12



Intuition on exchangeability

Peaks representation:

0

dl dr

0

0

allow to show that, at every step:

• the positions of the peaks are uniform on the smaller cycle CR of size R = 1 −
∑

mi

• the distributions of the peaks number, lengths and positions do not depend on the
diffusion policy

• even more surprisingly, for the peaks number and positions: do not depend on which
peak is extended by the diffusion
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Distribution of the number of blocks N (k) and of the lengths of the free blocks

Reminder: |F | = (|Fi |)1≤i≤N(k) and σ.|F |
R =

(
|Fσi

|
R

)
1≤i≤N(k)

,

for any σ ∈ SN(k) .

0

Theorem (Distribution of |F | conditional on N(k))
Recall that R = 1 −

∑
mi .

• unbiased version: if σ ∼ U(SN(k)), σ.|F |
R ∼ Dirichlet(N(k); 1, · · · , 1)

• biased version:

|F |
R

∼

{
Dirichlet(N(k); 1, · · · , 1) with probability 1 − R

Dirichlet(N(k); 2, 1, · · · , 1) with probability R
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Distribution of the number of blocks N (k) and of the lengths of the free blocks

Reminder:
L
(
|F (k)|

∣∣∣ (m1, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

Theorem (Distribution of N(k))

If we let Rk = 1 −
∑k

i=1 mi and B(k − 1,Rk) ∼ Binomial(k − 1,Rk),

N(k+1) (d)
= 1 + B(k − 1,Rk)

∑
mi

Rk
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Distribution of the occupied blocks

One block case:

P
(
N(k) = 1

)
=

(∑
mi

)k−1
=: Q(

∑
mi , k)

and, conditional on N(k) = 1, O(k) is reduced to an interval [A,B]
with A uniform on C

General case:

0

Theorem

P
(
σ.|O(k)| = (M0, · · · ,Mb−1)

)
=

∑
P∈P(k,b)

[
n−1∏
ℓ=0

1∑
i∈Pℓ

mi=Mℓ

][
b−1∏
ℓ=0

Q(Mj , |Pj |)

]
(1 −

∑
mi )

b−1

(b − 1)!

where σ ∼ U(SN(k)) and P(k, b) is the set of partitions P = (P0, · · · ,Pb−1) of the set
{1, · · · , k − 1} as a sequence of b non empty parts.
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Conclusion and perspectives

• discrete space extension

• analysis of the asymptotic cost of parking procedures

12 / 12
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