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Une thése a l'interface combinatoire-probabilités

Des modéles aléatoires simples pour expliquer des phénoménes complexes
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Le modeéle de golf

s




Définition du modéle de golf

G =(V,E), ici Z/nZ
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Définition du modéle de golf

N; trous :
Trinit _ {O}

e Une configuration initiale (aléatoire)
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Définition du modéle de golf

N, trous : N
= {O)

e Une configuration initiale (aléatoire)

Ny balles :

B"={@@ ... .}

Une horloge d’activation pour chaque balle :

A, ~U([0,1])
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Définition du modéle de golf

e Une configuration initiale (aléatoire)

N, trous :

Tinit _ {O}
Ny balles :
B" - (@@ ...}
Une horloge d’activation pour chaque balle :

A, ~U([0,1])

>

Le modéle de golf sur Z/nZ : @&

L Z/nZ
Bmlt Tlnlt ~ f
(B, ) ~ Uni <<Nb, Ne,n — N — /vb>>

N; et N, fixés, avec N > N
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Définition du modéle de golf

e Une configuration initiale (aléatoire)
e Une dynamique (aléatoire également)

e Configuration finale
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Définition du modéle de golf

e Une configuration initiale (aléatoire) Trous résiduels (libres) -

e Une dynamique (aléatoire également) TL_ {positions des O 3f— 1}
e Configuration finale
Trous occupés :

TO — {positions des @O}

at=1
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Définition du modéle de golf

e Une configuration initiale (aléatoire) Trous résiduels (libres) :

e Une dynamique (aléatoire également) TL_ {positions des O 3f— 1}
e Configuration finale
Trous occupés :

TC = {positions des Y }
"@0
Proposition

La variable aléatoire T! est bien définie.
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Définition du modéle de golf

e Une configuration initiale (aléatoire) Trous résiduels (libres) :

e Une dynamique (aléatoire également) TL_ {positions des O 3f— 1}
e Configuration finale
Trous occupés :

TC = {positions des Y }
"@0
Proposition

La variable aléatoire T! est bien définie.

Propriété de commutation (Diaconis-
Fulton 91)

La distribution de T est indépendante de
I'ordre d'activation des balles
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Analyse de T*' - distribution a n fixé

Théoréme (Universalité de T - V. 25)

Pour tout p,
N —1 ‘.
Pn,Nb,Nt,p (TL _ ) — ( i )
(Nl,,Nc,n Ny — Z H b +1 b, b;, {; — 2b;
ou on somme sur |'ensemble des (b;)o<i<n, tels que Y, bj = Ny et Vi, 2b; < ¢;.
I =106
= {XO oo ,XNL_l}, NL = Nt — Nb.
X3
3 =2
O<xi<...<xy-1<X <n
Qo @
0 ! 1 =0 VI', é,‘ = (X,'+1 — Xj — 1) mod n
lo=4
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Analyse de T*' - distribution a n fixé

Théoréme (Universalité de T - V. 25)

Pour toute politique locale et invariante par rotation,

N N 1 1 12
PN"NP(TL_ )_( n Nt)ng+l(b,,b,,£2b>

Nb,Ng,n—Nb—

ou on somme sur |'ensemble des (b;)o<i<n, tels que Y, bj = Ny et Vi, 2b; < ¢;.

Politique locale ?

Point de vue
de ® :

)
O ol
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Analyse de T*' - distribution a n fixé

Théoréme (Universalité de T - V. 25)

Pour toute politique locale et invariante par rotation,

Ny, , N, L it ;
PN t’P(T = ): ZH b+1(b;,b;,€;2bi>

(Nb,Nhn Nb
ou on somme sur |'ensemble des (b;)o<i<n, tels que Y, bj = Ny et Vi, 2b; < ¢;.

Idée de la preuve :

3x0+3xe

[¢]
P TL _ Binit’ Tlnlt ; J.r _ HP TL :\/d Binit7 Tmlt :v

i bi xO+b; X @

1xo+1lxe
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Analyse de T*' - distribution a n fixé

Théoréme (Universalité de T - V. 25)

Pour toute politique locale et invariante par rotation,
Ny —1
/-
Pt er (74— ) = % W el i)
(NlnNhn N[, b + 1 bi, bi,gi — 2b,

ou on somme sur |'ensemble des (b;)o<i<n, tels que Y, bj = Ny et Vi, 2b; < ¢;.

Idée de la preuve :

3x0+3xe

[¢]
P TL _ Binit’ Tinit . J.r _ HP TL _ Q Binit’ Tinit . Q
o b, X O
! +b, X @

1xo+1lxe
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Analyse de T! - comportement asymptotique

Pas de sommets neutres : n = Ni(n) + Ny(n). Nombre de trous résiduels (libres a t = 1) :
Ni(n) = Ne(n) — Np(n).

PlusGrandBloc) = taille du iéme plus grand bloc de V\T*.

PIusGrandBIoc
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Analyse de T! - comportement asymptotique

Pas de sommets neutres : n = N¢(n) + Nyp(n). Nombre de trous résiduels (libres a t = 1) :
Ni(n) = Ne(n) — Np(n).

PlusGrandBloc) = taille du iéme plus grand bloc de V\T*.

Théoréme (cas linéaire - V. 25)
Si Ny = Ni(n) ~ an, avec a > 0, alors 3a, B > 0 tel que

PlusGrandBloc®
F (a = T = njoo L PlusGrandBloc

5/19



Analyse de T! - comportement asymptotique

Pas de sommets neutres : n = N¢(n) + Nyp(n). Nombre de trous résiduels (libres a t = 1) :
Ni(n) = Ne(n) — Np(n).

PlusGrandBloc) = taille du iéme plus grand bloc de V\T*.

Théoréme (cas linéaire - V. 25)
Si Ny = Ni(n) ~ an, avec a > 0, alors 3a, B > 0 tel que

(1)
]P’(a < PlusGrandBloc SB) 9
log n n—oco

Théoréme (transition de phase - V. 25)

. 1 P
o Si Ny < +/n, alors PlusGrandBloc" _, 7
n
o b g

: PlusGrandBI
e SiN.> +/n, alors ZUSErANCERC— —, ), )

e Description de la transition de phase : si N /\/n — X\ >0,

) p BW) tel queT_) =1
(P'GidB'“, > 1) G (PIusGrandesExc(B(A)),i > 1).
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Le modéle de parking

Le modéle de parking :
R

% &

introduit pour I'étude du
hashage linéaire
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Le modéle de parking

Le modéle de parking : Théoréme [Pittel 87, Chassaing-Louchard 02]
e Si Ny = Ni(n) ~ an, a > 0, alors PlusGrandBloc™™ converge en proba :
% PlusGrandBloc™ = logn = 3/2log logn + O(1).
a—1—loga
e Si N < /n, alors w 51

% &

. 1) P
Si Ny > +/n, alors % — 0.

o Description de la transition de phase : si N /v/n — X\ > 0,

MSRECE Fellr [FEES Gl (7P|USGra?,dBloc(i) S > 1) @ (PIusGrandesExc(e(A))7 i> 1).
hashage linéaire
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Le modéle de parking

Le modéle de parking :

3

% &

introduit pour I'étude du
hashage linéaire

Le parking généralisé :
politique de déplacement
des voitures locale et
invariante par rotation
(Nadeau 23)

Théoréme [Pittel 87, Chassaing-Louchard 02]

e Si Ny = Ni(n) ~ an, a > 0, alors PlusGrandBloc™™ converge en proba :
| —3/2logl
ogn —3/2loglogn +o(1).
a—1—loga

2 PlusGrandBloc(®) P,
e Si N < /n, alors Tussranesec — — 1.

PlusGrandBloc®) =

; PlusGrandBloc®) P

e Si N. > /n, alors ussranesec— 5 0.

o Description de la transition de phase : si N /v/n — X\ > 0,
(M > 1) ) (PIusGrandesExc( Wy i > 1).

Théoréme (V. 25 - Universalité de la loi de T* pour le parking généralisé)
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Le modéle de parking

Le modéle de parking : Théoreme [Pittel 87, Chassaing-Louchard 02, V. 25 (parking généralisé)]

e Si Ny = Ni(n) ~ an, a > 0, alors PlusGrandBloc™™ converge en proba :

% PlusGrandBloc®) = logn —3/2loglogn

O(1).
a—1—loga +0(1)
- PlusGrandBloc*) P,
e Si N < /n, alors Tussranesec — — 1.
. PlusGrandBloc(®) P,
% & e Si N. > /n, alors ussranesec— 5 0.
o Description de la transition de phase : si N /v/n — X\ > 0,
introduit pour I'étude du (p|usGrandB|oc s 1) ( (PIusGrandesExc( (A))7 i 1).
hashage linéaire
Le parking généralisé : Théoréme (V. 25 - Universalité de la loi de T* pour le parking généralisé)
politique de déplacement
des voitures locale et P Ne Nesp (TL _ X) — 1 ( ) H(Z +1) ti—1
N
invariante par rotation n"b -, i=1

(Nadeau 23)
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Comment obtenir des résultats asymptotiques ?
A;Th = taille du ieme bloc de V\T*. A Th
AsTE
Tailles des blocs quand n = Ny(n) + Ny(n)

N —1
1 L
Pt (vi, AT = 28;) = o~ (200 +1) [ G, b\g/fAlT ’

(Nl:) i=0 Ao TL
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Comment obtenir des résultats asymptotiques ?

A;Th = taille du ieme bloc de V\T*. A Th
AsTE
Tailles des blocs quand n = Ny(n) + Ny(n)

N —1
1 L_
Pn’Nl”N"p <VI,A, T L 2b,> = -5 (2bo =+ 1) | I Cb’. \ﬂ/fAlT L

(Nl:) i=0 Ao TL

De la combinatoire...
Forests(n, Ny ) = foréts d'arbres binaires a n noeuds et N, racines;

N —1 R N :
[[:}, "~ G = nombre de foréts telles que le iéme arbre a b; noeuds internes

. -
o
% }D
N ,'

— étude des excursions de p ~ Unif (Paths(n, Ni)) (ou Paths(n, Np) = chemins tels que 7_y, = n) /
7/19



Comment obtenir des résultats asymptotiques ?
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Ne—1 L_
Pt (vi, AT = 28;) = o~ (200 +1) [ G, b\g/fAlT -0
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Comment obtenir des résultats asymptotiques ?
A;Th = taille du ieme bloc de V\T*. A Th
AsTE
Tailles des blocs quand n = Ny(n) + Ny(n)

N —1
1 L
Pt (vi, AT = 28;) = o~ (200 +1) [ G, b\g/fAlT ’

(Nl:) i=0 Ao TL

...et des probas : si p ~ U (Paths(n, Np)), alors

(P(2”t)) (@) gy
m te[0,1]

dans (C([0,1],R),]|.||oc), ot BX) est un mouvement brownien B conditionné par 7_y(B) = 1.

Et pour tout k, les k plus grandes longueurs d'excursions de p, normalisées, convergent vers
celles de B (lemme d'Aldous).
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odéle de golf sur Z - Définition

Configuration initiale pour tout sommet u, indépendamment des autres sommets :

e état initial : balle avec proba d, OU trou avec proba di, 0 < dp, < dk
e horloge d’activation : A, ~ U ([0, 1])

0.1 0.88 0.52 0.721 0.4 0.6 0.7

A son activation, une balle réalise une marche aléatoire de paramétre p jusqu'a atteindre un trou libre.

Le modeéle est-il bien défini ? Est-ce que chaque balle trouve un trou?
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odéle de golf sur Z - Définition

Configuration initiale pour tout sommet u, indépendamment des autres sommets :
e état initial : balle avec proba d, OU trou avec proba di, 0 < dp, < dk
e horloge d’activation : A, ~ U ([0, 1])

0.1 0.88 0.52 0.721 0.4 0.6 0.7

A son activation, une balle réalise une marche aléatoire de paramétre p jusqu'a atteindre un trou libre.

Le modeéle est-il bien défini ? Est-ce que chaque balle trouve un trou?

Théoreme (V. 25)
Le modéle de golf sur Z est bien défini (y compris pour d, = dt).
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Le modéle de golf sur Z - Distribution de T*

(A,-TL) = processus des tailles des blocs. Supp. que d, + d; = 1.
i€z

Théoréme (V. 25)

o Sid, < d; : il existe G, H et \ (explicites) tels que, pour tout R > 0,
(2by + 1)A2b0 Cp, 15[ A2biC,
MO A, 0

]P’(A,-TL:2b,-,—R§i§ R) _

e Sidy = d;, alors presque siirement, Tt =90,
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Le modéle de golf sur Z - Distribution de T*

(A,-TL) = processus des tailles des blocs. Supp. que d, + d; = 1.
i€z

Théoréme (V. 25)
o Sid, < d; : il existe G, H et \ (explicites) tels que, pour tout R > 0,
(2bo + 1)A%b0 Cp, 15[ A2biC,
H(N) g(A)

]P’(A,-TL —2b,—R<i< R) _
i=—R,i#0

") _op _R<i< R)

— |im P" (A,—TL

n— o0

e Sidy = d;, alors presque siirement, Tt =0,

Clé : couplage avec le golf sur Z/nZ

Noln) _y g, Meln) _, g,

n
environnement local : similaire + suffisant
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Modéles continus (et discrets) de dispersion
(avec Jean-Francois Marckert)




Définition du modeéle

Modele défini sur C = R/Z. mo,--- ,m, ot >, m; < 1.
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Définition du modeéle

Modele défini sur C = R/Z. mo,--- ,m, ot >, m; < 1.
A I'étape k :

e arrivée d'une goutte de taille 7, en ux ~ U(C)
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e étalement continu de la goutte (la nouvelle zone couverte
est de taille 77,) entre le temps k et le temps k + my
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inition du modéle

Modele défini sur C = R/Z. mo,--- ,m, ot >, m; < 1.
A I'étape k :
e arrivée d'une goutte de taille 7, en ux ~ U(C)

e étalement continu de la goutte (la nouvelle zone couverte
est de taille 77,) entre le temps k et le temps k + my

Configuration au temps k (i.e. aprés étalement de la goutte
k—1):

o [éspace’occupe 0%

e espace libre F¥ =¢\0®
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Définition du modeéle

Modele défini sur C = R/Z. mo,--- ,m, ot >, m; < 1.
A I'étape k :
e arrivée d'une goutte de taille 7, en ux ~ U(C)

e étalement continu de la goutte (la nouvelle zone couverte
est de taille 77,) entre le temps k et le temps k + my

F(S) ]
2 F5) Configuration au temps k (i.e. aprés étalement de la goutte
3

k—1):
o [éspace’occupe 0%
e espace libre F¥ =¢\0®
e plus précisément, N® blocs de chaque type

(0%, FM), iy avec 0 € OfF U F¥

i

F:ES) 0
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Définition du modeéle

F

F®

0

Modele défini sur C = R/Z. mo,--- ,m, ot >, m; < 1.
A I'étape k :
e arrivée d'une goutte de taille 7, en ux ~ U(C)

e étalement continu de la goutte (la nouvelle zone couverte
est de taille 77,) entre le temps k et le temps k + my

Configuration au temps k (i.e. aprés étalement de la goutte
k—1):

o [éspace’occupe 0%
e espace libre F¥ =¢\0®
e plus précisément, N® blocs de chaque type

(0%, FM), iy avec 0 € OfF U F¥

i
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inition du modéle

Hypothéses de validité pendant la phase d’étalement :

e étalement continu :

t=k+e+de dl 4+ dr = de

===
uy dlu3z Uk dr

e étalement local : dl et dr dépendent uniquement de la

F2(5) composante connexe contenant uy (une des O,-(k+5))

F3(5) e processus invariant par translation

F:ES) 0
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éfinition du modéle

Hypothéses de validité pendant la phase d’étalement :

e étalement continu :

t=k+e+de dl 4+ dr = de

uy d-/ Uz Uk dr

e étalement local : dl et dr dépendent uniquement de la
F2(5) composante connexe contenant uy (une des O,-(k+5))

F3(5) e processus invariant par translation

Exemples d’étalement continu :

. oW, F

0 0 uo uy U3 1=0 mod 1
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éfinition du modéle

Hypothéses de validité pendant la phase d’étalement :

e étalement continu :

t=k+e+de dl 4+ dr = de

uy d-/ Uz Uk dr

e étalement local : dl et dr dépendent uniquement de la
Fz(s) composante connexe contenant uy (une des O,-(k+5))

F3(5) e processus invariant par translation

Exemples d’étalement continu :

. oW, F

I
+

0 0 uo uy U3 1=0 mod 1

e Diffusion d'une proportion p a droite, 1 — p a gauche

e “tartineur de confiture nocturne” O 10/19



Résultats d’universalité

Masses fixées : mg,- -+, my—_1 ot »_ m; < 1.

Espace libre de taille R =1 — Zf;ol mi.

Théoréme (Marckert, V. 25+)

Indépendamment de la politique de diffusion,
e Nombre de blocs :

e Longueur des blocs libres :

e Longueur des blocs occupés :
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Résultats d’universalité

Masses fixées : mo, -+, me—1 ot »_ m; < 1.
Espace libre de taille R =1 — Zf;ol mi.
Théoréme (Marckert, V. 25+)

Indépendamment de la politique de diffusion,
o Nombre de blocs : N*) 2 1 + Binomial(k — 1, R)
o Longueur des blocs libres : %(k)‘ ~ Dirichlet(N®);1,... 1)

e Longueur des blocs occupés : une formule pour P (|O(k)\ = (Mo, ..., Mb,l))
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Résultats d’universalité

Masses fixées : mg,- -+, my—_1 ot »_ m; < 1.

Espace libre de taille R =1 — Zkﬂ mi.

i=0 uy, up, uz ~ U([0,1])

0 us Uy Uz

Théoréme (Marckert, V. 25+)

Indépendamment de la politique de diffusion, i a
0
(d)

o Nombre de blocs : N¥) = 1 + Binomial(k — 1, R) ..., d3) ~ Dirichlet(4; 1

e Longueur des blocs libres : %m‘ ~ Dirichlet(N(k); 1,...
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Indépendamment de la politique de diffusion,
o Nombre de blocs : N*) 2 1 + Binomial(k — 1, R)
o Longueur des blocs libres : %(k)‘ ~ Dirichlet(N®);1,... 1)

e Longueur des blocs occupés : une formule pour P (|O(k)\ = (Mo, ..., Mb,l))

£ (1P| o+ mcs)) = £ (1FD) | (£ mi0.+.0))

En tant que processus en k, on connait aussi, indépendamment de la politique de diffusion :
o L(N® Kk >0)
o L({|0YW]}},k >0)
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Principe de la preuve

e Des propriétés invariantes tout au long de |'étalement :
e les positions des pics sont uniformes sur le cercle de taille R=1— > m;
e lorsqu’on étale “depuis un pic”’, la probabilité de rencontrer d'autres pics dépend uniquement
de la quantité étalée

dl dr

12/19



Principe de la preuve

e Des propriétés invariantes tout au long de |'étalement :
e les positions des pics sont uniformes sur le cercle de taille R=1— > m;
e lorsqu’on étale “depuis un pic”’, la probabilité de rencontrer d'autres pics dépend uniquement
de la quantité étalée

dl dr

12/19



Principe de la preuve

e Des propriétés invariantes tout au long de |'étalement :
e les positions des pics sont uniformes sur le cercle de taille R=1— > m;
e lorsqu’on étale “depuis un pic”’, la probabilité de rencontrer d'autres pics dépend uniquement
de la quantité étalée

dl dr

12/19



Principe de la preuve

e Des propriétés invariantes tout au long de |'étalement :
e les positions des pics sont uniformes sur le cercle de taille R=1— > m;
e lorsqu’on étale “depuis un pic”’, la probabilité de rencontrer d'autres pics dépend uniquement
de la quantité étalée

dl dr

Conclusion : N®) @ 1 ¢ Binomial(k — 1, R)
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Version discréte

sur C, :={0/n,--- ,(n—1)/n} CC:
o les gouttes arrivent sur C, : Vi, uj ~ U(Cy)
e et recouvrent des intervalles dont les extrémités appartiennent a C,
e politique de dispersion valide : invariante par rotation 1/n seulement (et

toujours locale)
Théoréme (Universalité des modéles discrets - Marckert-V. 25+)
Les distributions suivantes sont explicites et indépendantes de la politique de diffusion :
o Ak fixé :
o £(OW FK)
o £ (PO (oo ) = £ (1FO) | (S0, .0))
e En tant que processus en k :
o L(N® Kk >0)
o L{{IOW]}},k>0)
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Comparaison des modéles continus et discrets

)

NG 2 1 4 Binomial(k — 1, R) N Dy
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Comparaison des modéles continus et discrets

d L
NG 9@ 1+ Binomial(k — 1, R) N @ 1+ Binomial(k —1,R — 1/n)
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Comparaison des modéles continus et discrets

N 2 + Binomial(k — 1, R) ORI + Binomial(k —1,R — 1/n)
Comportement asymptotique quand k =n— A\y/net Vi,m; =1/n
N, P NP 1
Nombre de blocs : 2t — A Nombre de blocs : % — \(1—e™1)

VN oo Vi oo
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Comparaison des modéles continus et discrets

N 2 + Binomial(k — 1, R) ORI + Binomial(k —1,R — 1/n)
Comportement asymptotique quand k =n— A\y/net Vi,m; =1/n
N, P NP 1
Nombre de blocs : 2t — A Nombre de blocs : % — \(1—e™1)

VN oo Vi oo

Tailles des plus grands blocs (Bertoin-Miermont 06, Chassaing-Louchard 02) :
(BusGrandBioc® 3 < < j) % (PlusGrandesExc(e™);, 1 < i < j)
n

— 00
14/19



Coiit asymptotique des modéles discrets

" i Deux objets importants
CotitGlobal,(r) = colit pour garer la voiture | .
pay o |a liste t;
r . e [E [Colity] et Var (Colt;
= ZCoﬁt't/., ou t; taille du bloc dans lequel tombe la voiture 7 [ 2 ( ‘)
i=1

Coiit du parking classique : Coiit; ~ Unif ([1, ¢])

|
T
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r Deux objets importants
CoitGlobal,( Zcout pour garer la voiture 7
i=1

o la liste t;
. ) ) . e E[Coiity] et Var (Codtp)
= ZCoﬁtt/., ou t; taille du bloc dans lequel tombe la voiture i
i=1
Coiit du parking classique : Coiit; ~ Unif ([1, ¢])
Si r = n, (Flajolet-Poblete-Viola 98)
boA
o 1 i NN
CoitGlobal,(r) % / s % ’A " \
n o0 0

/2

lllustration de [ e.dt :
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r Deux objets importants
CoiitGlobal,(r) = Zcoﬂt pour garer la voiture i

/ o |a liste t;
i=1

Z g . i . e E[Coiity] et Var (Codtp)
= ZCoﬁtt/., ou t; taille du bloc dans lequel tombe la voiture i
i=1
Coiit du parking classique : Coiit; ~ Unif ([1, ¢])
Si r = n, (Flajolet-Poblete-Viola 98)

. 1
oSt () oy [* S,
n /2 n—oo Jq

Si r = |n— Av/n|, (Chassaing-Louchard 02)

lllustration de fol eM(t) — info, e (s)dt :

A 1
CotitGlobaln(r) (), / V() — inf eV(s)dt=: F())
0

n3/2 n—oo s<t
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Coiit asymptotique des modéles discrets

r Deux objets importants
CoiitGlobal,(r) = Zcoﬂt pour garer la voiture i o la liste ¢
P a liste ¢
r i ) ) . e E[Coiity] et Var (Codtp)
= ZCoutt/., ou t; taille du bloc dans lequel tombe la voiture i
i=1

Coiit du parking classique : Coiit; ~ Unif ([1,¢]) Théoréme (Marckert-V.25+)

Si r = n, (Flajolet-Poblete-Viola 98) Convergence en loi de
CottGlobal,(r) * (a), /1 . CoiitGlobal, (|n — A\y/n])
n3/2 n—oo Jq ﬁan
Si r = |n— Av/n|, (Chassaing-Louchard 02) sous des hypothéses dépendant de E [Codty] et

o . Var(Codty), vers une limite explicite
CottGlobaln(r) ), / eM(t) — inf e™(s)dt=: F())
0

n3/2 n—oo s<t
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Coiit asymptotique des modéles discrets

r

g colit pour garer la voiture |
i=1

CoitGlobal,(

= ZCoﬁt;, ou t; taille du bloc dans lequel tombe la voiture 7

i=1
Coiit du parking classique : Coiit; ~ Unif ([1, ¢])
Si r = n, (Flajolet-Poblete-Viola 98)

CoitGlobal,(r) LN 1edt
n— o0 0 t

3/2
Si r = |n— Av/n|, (Chassaing-Louchard 02)

CoitGlobal,(r) Yy
n—>oo‘/0 € (t) N

R (N _
I inf e (s)de=

:F(N)

MW&‘?
Cas des marches aléatoires de paramétre p
Sip#1/2,

CouitGlobal,(|n — Av/n]) ), 1

n3/2

n— oo |2p — 1| F()\)

Sip=1/2,

CoiitGlobal,(|n —

n5/2

AVn]) @,

n~>oo 3

16

ot G(A\) = [y Jo" (R(x,y) = L(%,¥))Ls(x,y)> 2 dydx
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Les fourmis : un modéle d’apprentissage par
renforcement (avec Cécile Mailler)
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A chaque étape n :
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A chaque étape n :
e marche aléatoire X pondérée par W(n) :

W (n)
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a partir de V/, stoppée lorsqu’elle atteint F

P(u—v)=

sur
Ve, We(n+ 1) = We(n) + Llec

Modéle a boucles effacées (LE=loop-erased) :
= LE(X)
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Définition du modeéle

A chaque étape n :
@ e marche aléatoire X pondérée par W(n) :
WLIV
1 P(u—v)= (n)

Ze:u&e We(n)

a partir de V/, stoppée lorsqu’elle atteint F

n sur

Ve, We(n+ 1) = We(n) + Llec

Modéle a boucles effacées (LE=loop-erased) :

Sy
Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N"a F?
We(n)
Est-ce que (T . converge ?

Simulations pour n = 108
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Définition du modeéle

AN
7

A chaque étape n :
e marche aléatoire X pondérée par W(n) :

W (n)
Ze:uée We(n)

a partir de V/, stoppée lorsqu’elle atteint F

P(u—v)=

sur

Ve, We(n+ 1) = We(n) + Llec

Modéle a boucles effacées (LE=loop-erased) :

= LE(X)
Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N"a F?

We (n)
n

Est-ce que converge ?
e

Théoréme (Kious, Mailler, Schapira
2022)

Réponse : Oui, parfois

e Si G est un graphe séries-paralléles
Pour d'autres modéles de
renforcement :

e Si = X et G tree-like
e Si + chemin de long. min.
dans X et G est un losange

Mais : pas toujours des plus courts
chemins, quand 7 = X




Définition du modeéle

A chaque étape n : s ;
@ Modéle a deux nids

e marche aléatoire X pondérée par W(n) : A chaque étape n

W (n)
> cuce We(n) N(n) = {

a partir de V/, stoppée lorsqu’elle atteint F

n sur

Ve, We(n+ 1) = We(n) + Llec

1 P(u—v)= N1 avec proba « € (0,1),

N> avec proba 1 — a.

Modéle a boucles effacées (LE=loop-erased) :

Sy
Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N"a F?
We(n)
Est-ce que (T . converge ?
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Résultat principal sur le modéle a deux nids

Graphes séries-paralléles en triangle

Gi1, Gy et Gs graphes séries-paralléles
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Résultat principal sur le modéle a deux nids

N;(n) = nombre de chemins renforcés dans G; jusqu'a I'étape n

Théoréme (Mailler, V. 25+) Graphes séries-paralléles en triangle

Presque siirement,

<N1(n)7 Na(n) N3(n)>

— W
n—oco

)

n n n

Sity < {», alors,
o sily > {1+ {3, alors w = (1,0,1 — a),
e sils >Vl + 0o, alorsw = (a,1— «,0),
e sinon w = (f1,1 — B1, B3).

Gi1, Gy et Gs graphes séries-paralléles

17/19



Résultat principal sur le modéle a deux nids

N;(n) = nombre de chemins renforcés dans G; jusqu'a I'étape n

Théoréme (Mailler, V. 25+) Graphes séries-paralléles en triangle

Presque siirement,

<N1(n)7 Na(n) N3(n)>

— W
n—oco

)

n n n

Sity < {», alors,
o sily > {1+ {3, alors w = (1,0,1 — a),
e sils >Vl + 0o, alorsw = (a,1— «,0),
e sinon w = (f1,1 — B1, B3).

Gi1, Gy et Gs graphes séries-paralléles

Et, presque sirement, Ve € G;, Yl ¢, (aléatoire), ou
n—oo

€ #0 <= limN;(n)/n > 0 et e appartient a un plus court
chemin entre deux sommets de {N1, N>, F}.
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N;(n) = nombre de chemins renforcés dans G; jusqu'a I'étape n

Théoréme (Mailler, V. 25+) Graphes séries-paralléles en triangle

Presque siirement,

<N1(n)7 Na(n) N3(n)>

— W
n—oco

n n ' n

Sity < {», alors,
o sily > {1+ {3, alors w = (1,0,1 — a),
e sils >Vl + 0o, alorsw = (a,1— «,0),
e sinon w = (f1,1 — B1, B3).

Gi1, Gy et Gs graphes séries-paralléles

Et, presque sirement, Ve € G;, Yl ¢, (aléatoire), ou
n—oo

n

Urnes de Pdlya
€ #0 <= limN;(n)/n > 0 et e appartient a un plus court

chemin entre deux sommets de {N1, N>, F}. O AP TEENS SO EeHLES

Méthode des conductances et

résultats sur le modéle a un nid
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Perspectives

— Le modéle de golf sur Z?

— Etude du processus historique associé aux modéles continus de dispersions

— poursuite du modéle des fourmis (sur d'autres familles de graphes et/ou d'autres
algorithmes de renforcement)
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Perspectives

— Le modéle de golf sur Z?

— Etude du processus historique associé aux modéles continus de dispersions

— poursuite du modéle des fourmis (sur d'autres familles de graphes et/ou d'autres
algorithmes de renforcement)

Merci !
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Preuve que le golf sur Z est bien défini

Théoréme (V. 2024+)
Le modeéle de golf sur Z est bien défini.

Clé : codage de la configuration initiale
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Preuve que le golf sur Z est bien défini

Théoréme (V. 2024+)
Le modeéle de golf sur Z est bien défini.

Clé : codage de la configuration initiale /«

™~

n'a aucune aréte a son niveau = u n'est jamais occupé par une balle

Proposition (cas d, < d;)

Presque siirement, il existe un nombre infini de
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Loi de T! sur Z - Idée principale de la preuve

Clé : couplage avec le cercle, ( — db, N‘ — d;

Avec grande proba, et pour n assez grand :

e L’environnement local suffit : (A,-TL) peicp €t (A,-TL(”)> ne dépendent que de la
—RSIS —R<i<R

configuration initiale restreinte a [—Mg, Mg].
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Loi de T! sur Z - Idée principale de la preuve

Clé : couplage avec le cercle, ( — db, N‘ — d;

Avec grande proba, et pour n assez grand :

e L’environnement local suffit : (A,-TL) peicp €t (A,-TL(”)> ne dépendent que de la
—RSIS —R<i<R
configuration initiale restreinte a [—Mg, Mg].
e couplage des configurations initiales sur 7 et sur Z/nZ restreintes a [— Mg, MRg]
e couplage des trajectoires restreintes a [— Mg, Mg]
— AT =AT”, _R<i<R
e conclusion : en calculant lim,_00 P (A,' T"<n) =2b;,—-R<i< R)
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Distribution des blocs occupés

#(1=1) = (Sm) = ()

et, conditionalllement a N¥) =1, Ok = [A] A+ 3" m;] avec A uniforme
sur C
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Distribution des blocs occupés

#(1=1) = (Sm) = ()

et, conditionalllement a N¥) =1, Ok = [A] A+ 3" m;] avec A uniforme
sur C

Théoréme

b—1

P(|O(k)|:(Mo,...,Mb,1))=T(Mo,.--,Mb71) > (II e 1P 1s,, mi-m,

PEP(k,b) Le=0
od
- P(k, b) I'ensemble des partitions P = (Po,...,Ps—1) de {1,..., k — 1} avec b parties non vides,

b—1 _ b
-T(Mo,...,Mp—1) = Mo (li(zbl\—/’f;! + =
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