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Une thèse à l’interface combinatoire-probabilités

Des modèles aléatoires simples pour expliquer des phénomènes complexes
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Le modèle de golf



Définition du modèle de golf

• Une configuration initiale (aléatoire)

• Une dynamique (aléatoire également)

• Configuration finale

G = (V ,E ), ici Z/nZ
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Définition du modèle de golf

• Une configuration initiale (aléatoire)

• Une dynamique (aléatoire également)

• Configuration finale

Nt trous :
T init =

{ }

Nb balles :

B init =
{

, , , . . .
}

Une horloge d’activation pour chaque balle :

Av ∼ U ([0, 1])

Le modèle de golf sur Z/nZ :

(B init ,T init) ∼ Unif
((

Z/nZ
Nb,Nt, n − Nt − Nb

))
Nt et Nb fixés, avec Nt ≥ Nb
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Définition du modèle de golf

• Une configuration initiale (aléatoire)

• Une dynamique (aléatoire également)

• Configuration finale

t = 1

Trous résiduels (libres) :

T L =
{

positions des à t = 1
}

Trous occupés :

T o =

{
positions des , ,...

à t=1

}

Proposition

La variable aléatoire T L est bien définie.

Propriété de commutation (Diaconis-
Fulton 91)

La distribution de T L est indépendante de
l’ordre d’activation des balles
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Analyse de T L - distribution à n fixé

Théorème (Universalité de T L - V. 25)
Pour tout p,

Pn,Nb,Nt,p
(
T L = X

)
=

1(
n

Nb,Nt,n−Nb−Nt

) ∑ NL−1∏
i=0

1
bi + 1

(
ℓi

bi , bi , ℓi − 2bi

)
où on somme sur l’ensemble des (bi )0≤i<NL tels que

∑
i bi = Nb et ∀i , 2bi ≤ ℓi .

x3

x0
x1

x2

0

ℓ2 = 6

ℓ3 = 2

ℓ0 = 4

ℓ1 = 0

X = {x0 . . . , xNL−1}, NL = Nt − Nb.

0 < x1 < . . . < xNL−1 < x0 ≤ n

∀i , ℓi := (xi+1 − xi − 1)mod n
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Analyse de T L - distribution à n fixé

Théorème (Universalité de T L - V. 25)
Pour toute politique locale et invariante par rotation,

Pn,Nb,Nt,p
(
T L = X

)
=

1(
n

Nb,Nt,n−Nb−Nt

) ∑ NL−1∏
i=0

1
bi + 1

(
ℓi

bi , bi , ℓi − 2bi

)
où on somme sur l’ensemble des (bi )0≤i<NL tels que

∑
i bi = Nb et ∀i , 2bi ≤ ℓi .
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Analyse de T L - distribution à n fixé

Théorème (Universalité de T L - V. 25)
Pour toute politique locale et invariante par rotation,

Pn,Nb,Nt,p
(
T L = X

)
=

1(
n

Nb,Nt,n−Nb−Nt

) ∑ NL−1∏
i=0

1
bi + 1

(
ℓi

bi , bi , ℓi − 2bi

)
où on somme sur l’ensemble des (bi )0≤i<NL tels que

∑
i bi = Nb et ∀i , 2bi ≤ ℓi .

Idée de la preuve :

P

T L =

∣∣∣∣∣∣∣∣∣∣
B init ,T init :

3× + 3×

+

1× + 1×

 =
∏
i

P

T L =

∣∣∣∣∣∣∣B init ,T init :

3 × + 3 ×

+

bi × + bi ×


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Analyse de T L - comportement asymptotique

Pas de sommets neutres : n = Nt(n) + Nb(n). Nombre de trous résiduels (libres à t = 1) :
NL(n) = Nt(n)− Nb(n).

PlusGrandBloc(i) = taille du ième plus grand bloc de V \T L.

Théorème (cas linéaire - V. 25)
Si NL = NL(n) ∼ an, avec a > 0, alors ∃α, β > 0 tel que

P
(
α ≤ PlusGrandBloc(1)

log n
≤ β

)
→

n→∞
1

PlusGrandBloc(1)

PlusGrandBloc(2)

Théorème (transition de phase - V. 25)

• Si NL ≪
√
n, alors PlusGrandBloc(1)

n

P→ 1.

• Si NL ≫
√
n, alors PlusGrandBloc(1)

n

P→ 0.

• Description de la transition de phase : si NL/
√
n → λ ≥ 0,(

PlusGrandBloc(i)
n

, i ≥ 1
)

(d)→
(
PlusGrandesExc(B(λ)), i ≥ 1

)
.
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Le modèle de parking

Le modèle de parking :

0

1
2

3

4

5
6

7

introduit pour l’étude du
hashage linéaire

Théorème [Pittel 87, Chassaing-Louchard 02]

• Si NL = NL(n) ∼ an, a > 0, alors PlusGrandBloc(1) converge en proba :

PlusGrandBloc(1) =
log n − 3/2 log log n

a − 1 − log a
+ O(1).

• Si NL ≪
√
n, alors PlusGrandBloc(1)

n

P→ 1.

• Si NL ≫
√
n, alors PlusGrandBloc(1)

n

P→ 0.

• Description de la transition de phase : si NL/
√
n → λ ≥ 0,(

PlusGrandBloc(i)
n

, i ≥ 1
)

(d)→
(
PlusGrandesExc(e(λ)), i ≥ 1

)
.

Théorème (V. 25 - Universalité de la loi de T L pour le parking généralisé)

Pn,Nb,Nt,p
(
T L = X

)
=

1
nNb

(
n − NL

ℓ1, . . . , ℓNL

)
NL∏
i=1

(ℓi + 1)ℓi−1
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Le modèle de parking

Le modèle de parking :

0

1
2

3

4

5
6

7

introduit pour l’étude du
hashage linéaire

Le parking généralisé :
politique de déplacement
des voitures locale et
invariante par rotation
(Nadeau 23)
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Le modèle de parking

Le modèle de parking :

0

1
2

3

4

5
6

7

introduit pour l’étude du
hashage linéaire

Le parking généralisé :
politique de déplacement
des voitures locale et
invariante par rotation
(Nadeau 23)

Théorème [Pittel 87, Chassaing-Louchard 02, V. 25 (parking généralisé)]

• Si NL = NL(n) ∼ an, a > 0, alors PlusGrandBloc(1) converge en proba :
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log n − 3/2 log log n

a − 1 − log a
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Comment obtenir des résultats asymptotiques ?

∆iT L = taille du ième bloc de V \T L.

Tailles des blocs quand n = Nt(n) + Nb(n)

Pn,Nb,Nt,p
(
∀i ,∆iT L = 2bi

)
=

1(
n
Nb

) (2b0 + 1)
NL−1∏
i=0

Cbi
0

∆2TL

∆3TL

∆1TL = 0

∆0TL
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∆3TL
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De la combinatoire...

Forests(n,NL) = forêts d’arbres binaires à n noeuds et NL racines ;∏NL−1
i=0 Cbi = nombre de forêts telles que le ième arbre a bi noeuds internes

v

t1 t2 t3

→ étude des excursions de p ∼ Unif (Paths(n,NL)) (où Paths(n,NL) = chemins tels que τ−NL = n)
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...et des probas : si p ∼ U (Paths(n,NL)), alors

(
p(2nt)√

2n

)
t∈[0,1]

(d)−→ B(λ),

dans (C ([0, 1],R), ||.||∞), où B(λ) est un mouvement brownien B conditionné par τ−λ(B) = 1.

Et pour tout k , les k plus grandes longueurs d’excursions de p, normalisées, convergent vers
celles de B(λ) (lemme d’Aldous).
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Le modèle de golf sur Z - Définition

Configuration initiale pour tout sommet u, indépendamment des autres sommets :

• état initial : balle avec proba db OU trou avec proba dt, 0 ≤ db ≤ dt

• horloge d’activation : Au ∼ U ([0, 1])

0.1 0.88 0.721 0.4 0.6 0.70.52

À son activation, une balle réalise une marche aléatoire de paramètre p jusqu’à atteindre un trou libre.

Le modèle est-il bien défini ? Est-ce que chaque balle trouve un trou ?

Théorème (V. 25)
Le modèle de golf sur Z est bien défini (y compris pour db = dt).
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Le modèle de golf sur Z - Distribution de T L

(
∆iT L

)
i∈Z

= processus des tailles des blocs. Supp. que db + dt = 1.

Théorème (V. 25)

• Si db < dt : il existe G,H et λ (explicites) tels que, pour tout R > 0,

P
(
∆iT L = 2bi ,−R ≤ i ≤ R

)
=

(2b0 + 1)λ2b0Cb0

H(λ)

R∏
i=−R,i ̸=0

λ2biCbi

G(λ)

= lim
n→∞

Pn
(
∆iT L(n) = 2bi ,−R ≤ i ≤ R

)

• Si db = dt, alors presque sûrement, T L = ∅.

Clé : couplage avec le golf sur Z/nZ

0

Nb(n)
n

→ db,
Nt(n)

n
→ dt

environnement local : similaire + suffisant
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Modèles continus (et discrets) de dispersion
(avec Jean-François Marckert)

0

u0

u1

u2u3

u4

0

u0

u1

u2u3

u4



Définition du modèle

0

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1
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Définition du modèle

0

u0

m0

t = 0

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1
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Définition du modèle

0

u0

t = 1

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

m1

t = 1

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

t = 2

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2

m2

t = 2

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2

t = 3

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2 u3

m3

t = 3

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2 u3

t = 4

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2 u3

u4

m4

t = 4

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

u0

u1

u2 u3

u4

t = 5

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

t = 5

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0

t = 5

O
(5)
1

F
(5)
1
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(5)
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F
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O
(5)
3

F
(5)
3

Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1

10 / 19



Définition du modèle

0
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Modèle défini sur C = R/Z. m0, · · · ,mn où
∑

mi < 1.

À l’étape k :

• arrivée d’une goutte de taille mk en uk ∼ U(C)

•
::::::::
étalement

::::::
continu de la goutte (la nouvelle zone couverte

est de taille mk) entre le temps k et le temps k +mk

Configuration au temps k (i.e. après étalement de la goutte
k − 1) :

• espace occupé O(k)

• espace libre F (k) = C\O(k)

• plus précisément, N(k) blocs de chaque type

=⇒ (O
(k)
i ,F

(k)
i )1≤i≤N(k) avec 0 ∈ O

(k)
1 ∪ F

(k)
1
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Définition du modèle

0

t = 5

O
(5)
1

F
(5)
1

O
(5)
2

F
(5)
2

O
(5)
3

F
(5)
3

Hypothèses de validité pendant la phase d’étalement :
• étalement continu :

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

• étalement local : dl et dr dépendent uniquement de la
composante connexe contenant uk (une des O

(k+ε)
i )

• processus invariant par translation

10 / 19



Définition du modèle
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Hypothèses de validité pendant la phase d’étalement :
• étalement continu :

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

• étalement local : dl et dr dépendent uniquement de la
composante connexe contenant uk (une des O

(k+ε)
i )

• processus invariant par translation

Exemples d’étalement continu :

• Diffusion à droite :
−−→
O(k),

−−→
F (k)

0 1 = 0 mod 1u0 u2u1

m1 +m2m0
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Définition du modèle

0

t = 5

O
(5)
1
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(5)
1
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Hypothèses de validité pendant la phase d’étalement :
• étalement continu :

u1 uku3

m3 + ε+ dεm1

dl dr

t = k + ε+ dε dl + dr = dε

• étalement local : dl et dr dépendent uniquement de la
composante connexe contenant uk (une des O

(k+ε)
i )

• processus invariant par translation

Exemples d’étalement continu :

• Diffusion à droite :
−−→
O(k),

−−→
F (k)

0 1 = 0 mod 1u0 u2u1

m1 +m2m0

• Diffusion d’une proportion p à droite, 1 − p à gauche

• “tartineur de confiture nocturne” 10 / 19



Résultats d’universalité

Masses fixées : m0, · · · ,mk−1 où
∑

mi < 1.

Espace libre de taille R = 1 −
∑k−1

i=0 mi .

Théorème (Marckert, V. 25+)
Indépendamment de la politique de diffusion,

• Nombre de blocs :

N(k) (d)
= 1 + Binomial(k − 1,R)

• Longueur des blocs libres :

σ.|F (k)|
R

∼ Dirichlet(N(k); 1, . . . , 1)

• Longueur des blocs occupés :

une formule pour P
(
|O(k)| = (M0, . . . ,Mb−1)

)
• L

(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

En tant que processus en k, on connait aussi, indépendamment de la politique de diffusion :

• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)
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d0 d1 d2 d3

(d0, . . . , d3) ∼ Dirichlet(4; 1, . . . , 1)

u1, u2, u3 ∼ U([0, 1])
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Résultats d’universalité

Masses fixées : m0, · · · ,mk−1 où
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Principe de la preuve

• Des propriétés invariantes tout au long de l’étalement :
• les positions des pics sont uniformes sur le cercle de taille R = 1 −

∑
mi

• lorsqu’on étale “depuis un pic”, la probabilité de rencontrer d’autres pics dépend uniquement
de la quantité étalée

Représentation alternative : les pics

dl dr

?

Conclusion : N(k) (d)
= 1 + Binomial(k − 1,R)

12 / 19
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Version discrète

Discrétisation de la définition sur Cn := {0/n, · · · , (n − 1)/n} ⊂ C :
• les gouttes arrivent sur Cn : ∀i , ui ∼ U(Cn)

• et recouvrent des intervalles dont les extrémités appartiennent à Cn

• politique de dispersion valide : invariante par rotation 1/n seulement (et
toujours locale)

Théorème (Universalité des modèles discrets - Marckert-V. 25+)
Les distributions suivantes sont explicites et indépendantes de la politique de diffusion :

• À k fixé :

• L(O(k),F (k))

• L
(
|F (k)|

∣∣∣ (m0, · · · ,mk−1)
)
= L

(
|
−−→
F (k)|

∣∣∣∣ (∑mi , 0, · · · , 0)
)

• En tant que processus en k :

• L(N(k), k ≥ 0)
• L({{|O(k)|}}, k ≥ 0)
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Comparaison des modèles continus et discrets

Version continue :

∑
mi

N(k) (d)
= 1 + Binomial(k − 1,R)

Version discrète :

∑
mi

N(k) (d)
= 1 + . . .

Comportement asymptotique quand k = n − λ
√
n et ∀i ,mi = 1/n

Nombre de blocs : Nk√
n

P−→
n→∞

λ Nombre de blocs : N
(n)
k√
n

P−→
n→∞

λ(1 − e−1)

Tailles des plus grands blocs (Bertoin-Miermont 06, Chassaing-Louchard 02) :(
PlusGrandBloc(i)

n , 1 ≤ i ≤ j
)

(d)−→
n→∞

(
PlusGrandesExc(e(λ))i , 1 ≤ i ≤ j

)
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Coût asymptotique des modèles discrets

CoûtGlobaln(r) =
r∑

i=1

coût pour garer la voiture i

=
r∑

i=1

Coûtiti , où ti taille du bloc dans lequel tombe la voiture i

Deux objets importants
• la liste ti

• E [Coût.ℓ] et Var (Coût.ℓ)

Coût du parking classique : Coût.ℓ ∼ Unif (J1, ℓK)

Si r = n, (Flajolet-Poblete-Viola 98)

CoûtGlobaln(r)
n3/2

(d)−→
n→∞

∫ 1

0
etdt

Si r = ⌊n − λ
√
n⌋, (Chassaing-Louchard 02)

CoûtGlobaln(r)
n3/2

(d)−→
n→∞

∫ 1

0
e(λ)(t)− inf

s≤t
e(λ)(s)dt=: F (λ)

Coût= 4
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Théorème (Marckert-V.25+)
Convergence en loi de

CoûtGlobaln
(
⌊n − λ

√
n⌋
)

√
nαn

sous des hypothèses dépendant de E [Coûtk ] et
Var (Coûtk), vers une limite explicite
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CoûtGlobaln(r)
n3/2

(d)−→
n→∞

∫ 1

0
e(λ)(t)− inf

s≤t
e(λ)(s)dt=: F (λ)

Cas des marches aléatoires de paramètre p

Si p ̸= 1/2,

CoûtGlobaln(⌊n − λ
√
n⌋)

n3/2
(d)−→

n→∞

1
|2p − 1|F (λ)

Si p = 1/2,

CoûtGlobaln(⌊n − λ
√
n⌋)

n5/2
(d)−→

n→∞

1
3
G(λ)

où G(λ) =
∫ 1
0

∫ ex
0 (R(x , y)− L(x , y))1S(x,y)≥λdydx
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Les fourmis : un modèle d’apprentissage par
renforcement (avec Cécile Mailler)



Définition du modèle

N

F

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1 1

1 1

11

1

1

11

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1

1

1

1
11

2

2

2

2

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

16 / 19



Définition du modèle

N

F

1

1

1

1
11

2

2

2

2

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

N

F

Simulations pour n = 108

16 / 19



Définition du modèle

N

F

1

1

1

1
11

2

2

2

2

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

N

F

Simulations pour n = 108

16 / 19



Définition du modèle

N

F

1

1

1

1
11

2

2

2

2

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

N

F

Simulations pour n = 108

16 / 19



Définition du modèle

N

F

1

1

1

1
11

2

2

2

2

À chaque étape n :

• marche aléatoire X pondérée par W (n) :

P (u → v) =
Wuv (n)∑
e:u∈e We(n)

à partir de N , stoppée lorsqu’elle atteint F

• dépôt de phéromones sur γ :

∀e,We(n + 1) = We(n) + 1e∈γ

Modèle à boucles effacées (LE=loop-erased) :
γ = LE(X )

Question : Est ce que les fourmis trouvent un
(ou des) plus court(s) chemin(s) de N à F ?
Est-ce que

(
We (n)

n

)
e

converge ?

Théorème (Kious, Mailler, Schapira
2022)

Réponse : Oui, parfois

• Si G est un graphe séries-parallèles

Pour d’autres modèles de
renforcement :

• Si γ = X et G tree-like
• Si γ chemin de long. min.
dans X et G est un losange

0

N

F

χ1 1− χ1

1− χ1χ1

Mais : pas toujours des plus courts
chemins, quand γ = X

bN

F

b2

b3

bq

a

a2

a3

ap

b4

1/3

0

N

F

1
1/3

1/2

N

F

w∗w∗

1/21/2
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Modèle à deux nids
À chaque étape n,

N (n) =

{
N1 avec proba α ∈ (0, 1),

N2 avec proba 1 − α.

N2

F

N1
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Résultat principal sur le modèle à deux nids

Ni (n) = nombre de chemins renforcés dans Gi jusqu’à l’étape n

Théorème (Mailler, V. 25+)

Presque sûrement,(
N1(n)

n
,
N2(n)

n
,
N3(n)

n

)
−→
n→∞

w

Si ℓ1 ≤ ℓ2, alors,
• si ℓ2 ≥ ℓ1 + ℓ3, alors w = (1, 0, 1 − α),
• si ℓ3 ≥ ℓ1 + ℓ2, alors w = (α, 1 − α, 0),
• sinon w = (β1, 1 − β1, β3).

Et, presque sûrement, ∀e ∈ Gi , We (n)
n

−→
n→∞

ξe (aléatoire), où

ξe ̸= 0 ⇐⇒ limNi (n)/n > 0 et e appartient à un plus court
chemin entre deux sommets de {N1,N2,F}.

Graphes séries-parallèles en triangle

N2

F

N1

G1, G2 et G3 graphes séries-parallèles

Outils utilisés :

• Urnes de Pólya

• Approximations stochastiques

• Méthode des conductances et
résultats sur le modèle à un nid
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Perspectives

→ Le modèle de golf sur Z2

→ Étude du processus historique associé aux modèles continus de dispersions

u
u

→ poursuite du modèle des fourmis (sur d’autres familles de graphes et/ou d’autres
algorithmes de renforcement)

Merci !
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Annexes



Preuve que le golf sur Z est bien défini

Théorème (V. 2024+)
Le modèle de golf sur Z est bien défini.

Clé : codage de la configuration initiale

/

/

/

/

u

Su
Su+1

n’a aucune arête à son niveau =⇒ u n’est jamais occupé par une balle

Proposition (cas db < dt)

Presque sûrement, il existe un nombre infini de .
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Loi de T L sur Z - Idée principale de la preuve

Clé : couplage avec le cercle, Nb(n)
n

→ db,
Nt(n)

n
→ dt

0

Avec grande proba, et pour n assez grand :

• L’environnement local suffit :
(
∆iT L)

−R≤i≤R
et
(
∆iT L(n)

)
−R≤i≤R

ne dépendent que de la

configuration initiale restreinte à [−MR ,MR ].

• couplage des configurations initiales sur Z et sur Z/nZ restreintes à [−MR ,MR ]

• couplage des trajectoires restreintes à [−MR ,MR ]

=⇒ ∆iT L = ∆iT L(n), −R ≤ i ≤ R

• conclusion : en calculant limn→∞ P
(
∆iT L(n) = 2bi ,−R ≤ i ≤ R

)
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Distribution des blocs occupés

Cas à un bloc :

P
(
N(k) = 1

)
=

(∑
mi

)k−1
=: Q

(∑
mi , k

)
et, conditionalllement à N(k) = 1, O(k) = [A,A+

∑
mi ] avec A uniforme

sur C

Cas général :

0

Théorème

P
(
|O(k)| = (M0, . . . ,Mb−1)

)
= T(M0, . . . ,Mb−1)

∑
P∈P(k,b)

[
b−1∏
ℓ=0

Q(Mj , |Pj |) 1∑
i∈Pℓ

mi=Mℓ

]
où

- P(k, b) l’ensemble des partitions P = (P0, . . . ,Pb−1) de {1, . . . , k − 1} avec b parties non vides,

- T(M0, . . . ,Mb−1) = M0
(1−ΣMℓ)

b−1

(b−1)! + (1−ΣMℓ)
b

b!
.
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